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Foreword

viii

I am very pleased and honored that Omar Khan asked me to assist him in
developing this book, Geographic Information Systems and Health Applications.
Omar and I developed and co-chaired the first two International Health Geographics
Conferences in 1998 (Baltimore) and 2000 (Washington, DC). The nearly 500
attendees at those two conferences were exposed to tremendously exciting and
informative applications of this relatively “new” technology—new at least in the
health. I believe those conferences, as well as several others in recent years,
provided many of the contributions to this book, or were the impetus for new work
which you will read about here.

“Health Geographics” is a term that came into existence in the mid-1990s when
I began to ask if anyone was using GIS technology in the areas of healthcare, health
resources, health systems and health science. I was amazed at the number and
variety people around the world who were doing truly innovative things, yet thinking
they were in a very small minority. In fact, when I explored further and asked if there
were any conferences that catered to this group of researchers, I found little
happening. When I asked if there should be a ‘health geographics’ conference,
many said yes, but an even surprising number sent me abstracts and asked “When?”
and “Where?” I’m saying all this to illustrate that there has been a real need for
conferences such as those, and books such as these. There will be many more of
both as this powerful GIS technology is woven even deeper into the fabric of
healthcare and related health disciplines.

As the first conferences unfolded, we saw many GIS applications focused on
problems such as dengue fever, malaria, immunization programs, hospital catchment
area mapping, managing habitats for Lyme disease, etc.—all very interesting and
excellent uses of this technology. Health Geographics has matured greatly over the



ix
past five years—and still has a lot more ground to cover. Now we’re seeing
applications as mentioned before and in addition, Health Geographics professionals
are turning up in cancer research, tracking human pathogens in drinking water
supplies, and in some very interesting applications being discussed in hospital GIS
circles.

This book presents a very limited overview of some of the ways GIS is being
applied in health. I encourage you to read with an open mind, and challenge yourself
and your colleagues to think outside the box.

One final comment: I would like to dedicate my efforts on this book especially
to Greg and Carrie—they are the absolute pride of my life.

“Think Spatially – Decide Visually – Act Wisely – and Be Satisfied!”

Ric Skinner
Sr. GIS Coordinator
Department of Surgery
Baystate Medical Center
Springfield, MA  USA
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The use of Geographic Information Systems (GIS) in the health sector is an idea
whose time has come.  This is by no means a novel concept; spatial analysis has been
around as long as we have thought about spatial associations of disease, whether
looking at determinants, distributions, outcomes or utilization.  The current appli-
cations of GIS in health are diverse and extensive—I have had the privilege of co-
chairing two conferences on the topic, and have been impressed with the wide array
of geographically enabled projects and processes in the field.

The present GIS environment is heavily driven by technology and such an
approach is indeed logical for the most part. However, the needs of less developed
countries in utilizing the concepts and technologies of mapping should not be
neglected in the continuing evolution of GIS.  In the current computing environment,
where processors seem to be in need of an upgrade on an annual basis or sooner,
it should be realized that there remain barriers to the utilization of GIS, which include
the costs associated with training, equipment and personnel as well as with
sustainability.  It is therefore imperative that the collective health geographics
community be an inclusive one and support the use of technologies appropriate to
a variety of settings, whether in the developed or the developing world.  It is essential
that the resources of the technological era be brought to bear on bridging and not
expanding the divide between the two.

The technology of health mapping is only as good as the underlying concepts,
whether applying to a scientific research question or exploring a new way of
planning health delivery.  This book is about sharing the results of some of the most
innovative and useful ways in which our colleagues are utilizing GIS and spatial
analysis to solve health-related issues.  I am honored to be associated with the
wealth of talent and expertise that lies between these pages.  The work you will read
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about is a small but, I hope, representative sample of the diverse applications in this
growing field.

As with our conferences, Ric and I have selected the best of the best in this
volume. We have tried to make sure there is a mix of applications from various sub-
sectors within the field(s) of health.  We have divided the chapters into the following
sections:
· Section 1: Health Disparities & Community Health Issues
· Section 2: GIS & Cancer
· Section 3: Infectious Disease & International Health
· Section 4: Hospitals & Healthcare

Health disparities have been studied a great deal, but not very much has been
done to solve the problems therein using GIS.  Health mapping has a great deal to
contribute to this area, since much of the discussion is around issues of health and
place.   Practitioners and academics in the field of community health are well aware
of this, and the chapters in the first section of the book address the issue head-on,
led off by a conceptual piece co-authored by Dr. Mohammed Akhter, Executive
Director of the American Public Health Association, and Dr. Gregory Pappas, one
of the country’s leading thinkers in this area and former Senior Advisor to the U.S.
Surgeon General.  The pieces which follow are in-depth analyses of the ways in
which geographic methods can be used for community health, health disparities and
particular issues affecting communities such as alcohol-related problems. We hope
you find Health Disparities & Community Health Issues a thought-provoking
and informative collection.

Our second section on GIS & Cancer reflects the reality that while the global
threat of infectious diseases looks to be eradicable (given adequate resources and
political will to do so), the scourge of cancer remains a leading cause of morbidity
and mortality in the developed world.  From Long Island, New York to Galicia,
Spain, the authors included in this section provide invaluable insights as to how
cancer determinants and outcomes can be mapped and addressed using geo-
graphic technology.

Bangladesh, China and West Virginia all have in common the fact that infectious
diseases (albeit different ones!) remain a cause for concern.   While the so-called
epidemiological transition shows a logical progression from infectious to chronic
disease, in many regions of the world there remains a dual threat from both.
Whether seeing patients in a community health center in Karachi or at a travel clinic
in Baltimore, it is readily apparent that the spread of many  ‘exotic’ diseases is a
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plane flight away—and the world is smaller than it once was.  Mapping this world
is the task of our authors in the section on infectious disease and international health.
While the science of epidemiology is rooted in older, established methods, the
authors of this section present innovations on this theme which is apparent in
chapters on such as animating rabies patterns, remote sensing in China, spatial
modeling in Bangladesh, and an exciting new application of GIS and DNA
fingerprinting.

A burgeoning use of GIS in the last few years has been in the hospitals and
healthcare sector, and our fourth section is devoted to this emerging field.  There
are active discussions to expand the application of GIS in this area, discussions
which Associate Editor Ric Skinner is actively involved in. This section is a rich
collection of theoretical work and case studies from around the world. The
applicability of GIS to the scale of individual facilities has not been envisioned
previously, but now, a new breed of thinkers is expanding the borders of the use
of health mapping both within and beyond the hospital walls. From exploring
consumer markets, to mapping patients’ access to care, to mapping the human
body itself—there is a growing array of interesting and immediately applicable
research coming out of this field. We expect to see a lot more in the near future.

This book presents a sampling of the many applications utilizing GIS in the field
of health.  We hope to hear back from those who will use the book in the classroom,
in the workplace and in the field.  To the readers of the book, please let us know
how you have used it, whether as part of university curricula, as part of your day-
to-day applied work or as a resource guide.  Your feedback is an invaluable part
of this continuing body of work, and is the best way for us to respond to the needs
of those who are involved in this dynamic field.

Omar A. Khan
Editor
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Chapter I

Race, Class and Place:
Directions for the Future of

Public Health
Gregory Pappas

Macro International, Inc., USA

Mohammed Akhter
American Public Health Association, USA

Copyright © 2003, Idea Group Inc.

        This chapter is adapted from a presentation made at the plenary session
of the 2nd International Health Geographics Conference, March 2000,
Washington, DC.  At the time, Dr. Pappas served as Senior Policy Advisor to
the U.S. Surgeon General. Dr. Akhter is the Executive Director of the
American Public Health Association (APHA).

In this chapter we discuss the importance of community in public health science
and practice. Community is —first and foremost— place.  The science of place and
its implication for health has made major strides over the past decade.  The first and
second international conferences on health geographics marked an achievement in
that development.  The argument in this chapter draws out the implication of place
and community for public health science and practice.
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We begin with a review of the well-known facts about racial disparities in
health.  These disparities have dominated much of public health policy in recent
times.  Health disparities between social classes help illuminate our understanding
of race differences.  To understand the ways that race and class determine health,
however, we must adopt a more general model—a model for the social determi-
nation of health.  Review of the literature on the social determinants of health make
it clear that future efforts to improve the health of populations must concentrate on
modifying the more proximal determinants of health.  The study of these proximal
determinants requires a shift of focus away from the behavior of individuals onto
communities and the processes by which communities take shape.  These pro-
cesses can in turn be represented in graphical and geographical ways, enabling one
to examine interconnections between determinants of disparities.

This shift towards the study of ‘community’ and ‘place’ also causes us to think
differently about our models of public health practice. Current public health practice
has been influenced by two distinct traditions, both with historical roots in the 19th
century. The dominant model for public health practice—conceptualized as
surveillance, targeting and intervention—has its roots in 19th century paramilitary
public health institutions.  The implications of the military metaphors used in the
dominant model are explored in this chapter.  Another model for public health, also
with antecedents in the 19th century, is the community coalition model.  This model,
exemplified by the Settlement House movement, gave rise to local public health and
social service agencies in American cities that grew up during the last century.
Recently, this model has been re-invented or reinvigorated by community re-
sponses to the HIV/AIDS epidemic. Communities have resisted surveillance,
shunned being targeted, and defied intervention.    The future of public health should
embrace collaboration with community instead of viewing communities as the
object of study and modification (Mays, Miller & Halverson, 2000). Major
challenges for public health in the 21st century—behavior change of populations
and mobilization of local resources—will require a community-centered approach.
The future of public health requires a model that emphasizes sharing of information,
collaboratively identifying priorities and finding solutions with partners.  A commu-
nity-based model for public health gives clear direction to future developments of
geographic information systems.

RACE, CLASS AND HEALTH IN AMERICA
While the health of the nation as a whole has improved over the past decades,

racial and ethnic groups have continued to experience disparities in the burden of
illness and death.   Our current knowledge of biologic and genetic characteristics
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of racial and ethnic groups does not explain the health disparities.  Differences in
health status of African-Americans, Hispanics, Alaskan natives, Pacific-Islanders,
Asians and Whites in this country are believed to be the result of the complex
interactions among genetic variation, environmental factors, economic variables,
health behaviors and discrimination.

Racial and ethnic disparities in health cannot be understood or ameliorated
without a clear understanding of the role of social class in the determination of health
(Navarro, 1990).  The relationship between social class and health is robust and
long standing.  In European literature this relationship has been known at least since
the time of the ancient Romans when Pliny the Elder noted that slaves did not live
as long as their masters (Hamilton & Hardy, 1940).  Over the past 50 years, a rich
literature has demonstrated the complex relationship between social position and
health.  The disparities between the classes have grown over the past decades in
many countries.  Pappas et al. demonstrated a growing disparity in death rates
between education and income groups, from 1960 to 1986 (Pappas, Queen,
Hadden & Fisher, 1993).   Subsequent work by Miller et al. demonstrated the same

Figure 1: Evolution of public health practice
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trends for occupational classes (Schalick, Hadden, Pamuk, Navarro & Pappas,
1999). Widening mortality-related disparities between classes were observed
among whites and among blacks.

The widening gap in death rates in the United States between classes should
come as no surprise. Disparities in life expectancy between blacks and whites
increased during the same time period (Kochanek, Maurer & Rosenberg, 1994).
For a long time in the United States, race has been used as a proxy for social class
in public health  A widening gap between the races predicts a widening gap between
classes.  More recently the complex relationship between race, class and health has
been investigated (U.S. Department of Health and Human Services, 1998).
Patterns of association with health are similar for race and class.  Rogers has
demonstrated in a national study of the U.S population that race differences in all-
cause mortality can be completely explained by statistically controlling for social and
economic variables (Rogers, 1992). The issue of ethnicity enriches the relationships
further; while Hispanics in the United State are more commonly of lower income,
education status and occupation category, their health status is not uniformly lower
than blacks.  An explanation for the “Latino health paradox” has not yet been firmly
established (Abraido-Lanza, Dohrenwend, Ng-Mak & Turner, 1999), and repre-
sents an area for further examination by spatial means, by looking at the community
level.

Surgeon General David Satcher has summarized this literature in his words,
“Race and class are inextricably linked in the history of America and the health of
its people” (Satcher, 2000). While statistical modeling has attempted to tease out
the effect of various social determinants of health, for the reality of people’s lives,
race and class are fused. In American history, race and class have developed
interdependently. The health consequences of race and class are part of that history.
Newer technologies can and should be part of eliminating these disparities in the
future.

MOVING UP STREAM: SOCIAL DETERMINANTS
OF HEALTH AND THE ROLE OF PLACE

The relationship between race, class and health has been systematically
conceptualized in a literature concerning the social determinants of health.  A
number of sophisticated conceptual models to explain health disparities, incorpo-
rating race and classes, have been developed over the past three decades (Black,
Morris, Smith & Townsend, 1982; Susser, Watson & Hopper, 1985; Smedley &
Syme, 2000; Williams, 1990; Williams & Collins, 1995). While there are important
differences between these models, they draw from a similar literature and differ in
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emphasis, rather than in major assumptions.  David Williams arranges variables in
hierarchical fashion from distal (physiological determinants of health) to proximal
(broadest historical consideration) (Williams, 1990). The Williams model puts race
and class on a par, without giving one preeminence over the other. Most distal,
closest to health outcomes, are biological and physiological processes. In the
middle level of the model are the policy levers familiar to most public health
professionals that emphasize behavior change and access of health care. More
proximal variables include market forces, poverty, social class, inequality, racism,
bureaucratic structures and policy (Link & Phelan, 1996). Other models, while
similar in the broadest sense, give prominence to one variable or another.  Polednak,
for example, focuses his attention on the consequences of racial discrimination and
segregation on health (Polednak, 1989).  A comprehensive and comparative
analysis of models has not been attempted in the literature.   The point being made
is that race and class must be understood in terms of a conceptual framework within
which broad social forces are proximal determinants of health.

Figure 2: A framework for understanding the relationship between race, class
and health
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McGinnis and Foege have tried to quantify the magnitude of these proximal
factors in their paper on avoidable deaths, and estimate that over half of deaths
could be prevented through behavior change and public health measures (McGinnis
& Foege, 1993). This study has been methodologically superseded in a paper by
Lantz et al. that simultaneously examined the role of poverty alongside other risk
factors (Lantz, House, Lepkowski, Williams, Mero & Chen, 1998). In this
longitudinal study of mortality, the authors demonstrated that poverty strongly
predicts mortality (RR 2.2) even when important risk factors (smoking, body
weight, age, race and sex) are simultaneously considered. Put another way, the
overall conditions in communities explain more of ill health than individual behavior.1
The causes (and by extension, the solutions) of diseases and ill health of population
are “upstream.”  Place, i.e., the community-level, is where illness arises and where
we must work to prevent them.  With GIS tools coming into their own, it is therefore
time to realize their potential for analysis, beyond mere portrayal and visualization.

The HIV/AIDS epidemic provides a recent example of the importance of
community for public health practice. During the early phases of the epidemic,
lesbian and gay groups created an effective response when assistance from
government and public health professionals was not available.  Indeed, critics have
charged that government agencies undermined early community strategies that
were later adopted widely (Michael, Gagnon, Laumann & Kolata, 1994; Odets,
1995; Signorile, 1993). Traditional models of public health practice were ill-suited
to the task of rapid transformation of community norms regarding sexual behavior.
Communities created an effective model as a matter of survival; resources were
mobilized, at times despite obstacles created by professional practitioners. The
lesson for many has been that public health practice needs newer and more
adaptable, community-centered models to address behavior change.

TOWARDS A NEW MODEL FOR PUBLIC
HEALTH PRACTICE

To improve the health of populations in the 21st century, we must work to
improve our understanding of how life in communities patterns health behaviors and
how communities themselves are organized. Changing individual behavior requires
shifts in community norms, social structures and conditions of everyday lives that
determine these behaviors. Despite dramatic innovations in technologies in health
care and the pharmaceutical industry, we increasingly appreciate that only broad
community participation can ensure the equitable distribution of these technologies.

At the heart of the dilemma is the model of practice taught in most schools of
public health and used in public health agencies. The classic model of public health
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practice has been based on the concepts of surveillance, targeting and intervention,
and appears in a number of versions (Institute of Medicine, 1988).  The Institute of
Medicine in its report “The Future of Public Health,” set out three core functions for
public health practice: assessment, policy development and assurance (Institute of
Medicine, 1988). On reflection, this model is only a slight modification of the classic
model, and the professional dominance implicit in the IOM model can be traced to
the historical antecedents of our institutions.

The classical model for public health has its roots in 19th century paramilitary
public health institutions (Rosen ,1993), and the “public health police” of Kaiser
Wilhelm’s Germany were a model for early U.S. public health.   Military terms, more
than vivid metaphors, have provided a template for the culture and guided practices
of our public health institutions. The organizational structure of public health is
another part of this legacy that needs little mention: starting with a focus on the
community leads public health to a very different mode of practice.

The problems with the classical model should by now be clear. Communities
have for a long time told us that they do not want to be under surveillance, they do
not want to be our targets and that they no longer want to be intervened upon. A
community-centered approach to public health practice should emphasize informa-
tion sharing, collaborative identification of priorities and searching for solutions with
our partners.  This will require not just effective representation of the issues via health
atlases, but deeper and more analytical work to provide insights linking community
conditions with public health outcomes. Such work with the aid of geographic
technologies cannot only identify negative conditions but also highlight positive
ones, which can be optimized for a community’s health.

This transformation of the public health practice model is schematically
presented in Figure 1. The new approach to public health practice has, in part, come
out of the community response to the HIV/AIDS epidemic and the critique that
lesbian and gay groups have had regarding traditional public health practices
(Butler, 1996). Community public health activists have unfortunately had to struggle
against government in their efforts, which have included protection of confidential-
ity, needle exchange and local control of resources.  The task of public health is to
listen to communities and understand how professional public health practitioners
can work in concert to achieve shared goals.   It is promising that government
agencies and foundations have been moving to a model of community-based public
health practice in recent years.2

The community-based model for public health practice has its antecedents in
the urban reform movement and relies heavily on building the community coalitions.
The community-based model is exemplified by the Settlement House movement
(Addams, 1999). The urban reform movement, of which settlement houses were
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part, improved the health of the urban poor in the United States by changing the
conditions in which they lived. Led by women like Jane Adams, Margarett Sanger
and Susan B. Anthony, this reform movement worked by organizing communities,
working with the political structures and working with all segments of community
life—education, work, the physical environment, the status of women and civil
society.  The movement transformed American life and gave rise to local public
health and social service agencies in cities around the United States (Rosen, 1993).

CONCLUSIONS: POLICY, PLACE AND THE
FUTURE OF PUBLIC HEALTH

The increasing professionalization of public health during the last century has
had a paradoxical effect.  While science and institutions have developed, there has
been a reliance on the model of practice that separates public health institutions from
communities they intend on serving.   A full history of the origins of current public
health practice and its consequences is yet to be written.3 Clearly, the major
challenges for public health in the 21st century — behavior change and mobilization
of local resources — will require a community-centered approach, focusing on the
role of place and the attributes that go with it.   Movement in this direction is well
underway.

The systematic study of place and health, as evidenced by the chapters in this
book, will support the evolution of a community-centered public health practice.
The future of public health requires a community-centered model that emphasized
sharing of information, collaboratively identifying priorities and finding solutions with
partners. This is a challenge to both the way we do business and the methods we
use.  Geographic Information Systems and its evolving iterations possess the right
set of tools to meet such a challenge.   The community-based model for public health
practice gives clear direction, as well as a challenge, to those who will develop such
tools in the 21st century.

ENDNOTES
1 For a more comprehensive treatment of the relationship between poverty and

place see: Jargowsky, P.A.  (1998). Poverty and Place: Ghettos, Barrios
and the American City.  Russell Sage Foundation.

2 A  footnote to the discussion about the role of the gay community in the HIV/
AIDS epidemic is necessary.  Critiques have suggested that there are few
lessons to be learned from the experience of the gay community because they



Race, Class and Place: Directions for the Future of Public Health   9

are rich, educated and white.  Most public health challenges are in commu-
nities with few resources.  This formulation errs in two ways.  First, all gay men
and lesbians are not wealthy, well educated and white.  Second, while the
leadership of that community is privileged, it reached out across class, race
and cultural boundaries to create an effective coalition to combat the
epidemic.  It is the importance of coalition building and the need for leadership
that embraces the need for multi-racial, multi-class coalitions that are perhaps
the major lessons to be learned.  Recent work by William Julius Wilson in his
book Bridging the Racial Divide, has eloquently made this point: Wilson,
W.J.  (1999). The Bridge Over the Racial Divide: Rising Inequality and
Coalition politics. University of California Press.

3 Laurie Garrett’s book, Betrayal of Trust, makes a contribution in this
direction.  Chapter X, which outlines the history of public health in the United
States, falls short by focusing solely on infections diseases and because it lacks
a conceptual framework: Garrett, L.  (2000). Betrayal of Trust: The
Collapse of Global Public Health. New York: Hyperion.
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    The emerging discipline of health geographics uses the concepts and
techniques of medical geography (Meade, Florin & Gesler, 1988) together
with modern automated Geographic Information Systems (GIS) methods to
investigate health issues (Ricketts, Savitz, Gesler & Osborne, 1994).  The
main aim of this chapter is to bring the exciting potential contributions
inherent in this approach to the attention of health practitioners and
researchers.
     With the development of powerful, yet affordable geo-technologies,
digital maps and visual displays are produced that can be used for research,
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practice and/or health policy analysis. One major advantage of this technology
is that complex information can be displayed for the consumer in more
intuitive, self-explanatory form.  This is accomplished by linking and overlaying
health data to standard census geographic areas which can be accessed
quickly and flexibly from national and state agencies  (Devesa, Grauman,
Blor, Pennello, Hoover & Fraumeni, 1999; Kim, 1998).
     This chapter will illustrate how a GIS-based, multi-method approach can
be applied to the study of health disparities.  Using the pressing public health
issue of access to kidney transplantation in California as an example, we will
explore the notion of health disparities using a geographic conceptual
framework for studying and understanding existing gaps in transplantations
conducted. Different GIS techniques to addressing this issue are presented
with a discussion of the relative advantages of each approach and a final
review on how to most effectively use a GIS-based approach in studying
health disparities.

PERSISTENCE OF HEALTH DISPARITIES
Public health has been traditionally concerned with disease prevention and

health promotion activities directed at populations or communities rather than
individuals (Turnock, 2001).  Considerable effort has been devoted to the
assessment of health needs and disparities in our communities.  Health disparities
exist both at a global scale and at the national level.  Poor countries have fewer
resources to invest into developing their public health infrastructure as compared to
wealthier nations.  In the United States (U.S.), one of the most developed and
affluent countries in the world, persistent, and often increasing, health disparities
between various racial and ethnic populations have been documented.  Minority
groups consistently lag behind the majority of Americans in almost all morbidity and
mortality rates, as well as access to health care (United States Senate, 2000).
Similarly, minorities are documented to receive generally less health care services,
including but not limited to appropriate preventive care, intensive hospital care,
cardiovascular procedures and organ transplants (Fiscella, Franks, Gold &
Clancy, 2000).  Health disparities are not limited to minorities, but include the
underserved rural areas and areas of low socioeconomic status (United States
Senate, 2000).  Health indicators for rural areas are similar to those of minority
groups.  Health disparities have also been cited in relation to type of health insurance
coverage, and access to health care by the ‘working poor’ (Hogue, Hargraves &
Collins, 2000).  In addition, health disparities exist with regard to gender, with
women documented to suffer health disparities more than men (United States
Senate, 2000).
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Eliminating health disparities in the U.S. will require a national commitment and
concerted effort at preventing disease, promoting health and delivering appropriate
care. The U.S. Department of Health and Human Services Initiative to Eliminate
Racial and Ethnic Disparities in Health, one such effort, has six target areas: infant
mortality, cancer management, cardiovascular diseases, diabetes, HIV infection
and immunizations.

However, beyond obvious differences in disease and access rates by certain
population groups, current health data are inadequate in helping us understand how
to best address these existing disparities.  Fiscella et al. (2000) suggest that the way
current health data are reported does not accurately portray these disparities.  They
recommend to at least stratify data by socioeconomic status and race/ethnicity, and
conclude that there is a need to improve data collection methods and use new tools
that are sensitive for displaying such disparities.  To better identify health disparities
for all potential high-risk populations and monitor the effectiveness of health
interventions targeting these groups, new approaches in the use of existing data need
to be implemented. We believe that GIS technology and methods are appropriate
new tools to meet this challenge.

GIS TECHNOLOGY AND METHODS FOR
UNDERSTANDING HEALTH DISPARITIES

GIS Technology
Many questions concerning health and ill-health are related to space (Loslier,

1995).  However, the incorporation of geographic analysis into public health
science and practice has been slow.  A major deterrent has been the lack of
adequate tools for the management and analysis of spatially defined data.  The use
of geo-information technologies is offering new opportunities for research and
planning in public health and policy.

GIS has been described as one of the most exciting of the new information
technologies (Yasnoff & Sondik, 1999). It has been extensively used in natural
resource management, public works, transportation and government but until
recently, has been largely ignored in public health and socio-behavioral research
(Albert, Gesler & Levergood, 2000).  Intuitively, GIS can be defined as an
information technology that uses (digital) maps to interpret complex data (Clarke,
2001).  GIS allows the user to look at new relationships between variables, as one
can bring together many different types of data (i.e., health, resource use/allocation,
census, transportation, etc.). This in turn provides the social and physical context
necessary for enhancing analysis in health planning and policy to emerge (Maguire,
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Goodchild & Rhind, 1991).  Equally important, GISs permit the generation and
investigation of spatial hypotheses that open new vistas for analyzing latent
relationships from previously static and cross-sectional data (De Lepper, Scholten
& Stern, 1995; Novick, 1999).

Health Disparities Occur in a Geographic Context
Eliminating health disparities requires more than political will and administrative

resources; it is equally a matter of timely, accurate and geographically defined
information (Stern, 1995).   Health problems vary in geographic space, as do the
needs of people.

This need for spatially referenced information —and improved analytical
methods— is particularly acute in the current climate of changing health needs, risks,
health care delivery and public health practice (Roper & Mays, 1999).  By
capturing the spatial dimensions of this evolving environment and linking them with
important attributes aggregated at a variety of geographic levels (e.g., census block,
census tract, ZIP code, county or state), GIS and spatial analysis can be powerful
tools for better distinguishing and modeling the context within which health
disparities occur.  A multi-level approach can help alleviate the limitations imposed
by the ecologic fallacy (i.e., drawing inferences about individuals from population
level data) and by aggregation bias, as we are not restricted any longer to applying
large-area statistics (such as county averages) to individuals or small geographic
zones.

Also since most traditional research efforts in the study of health disparities
have emphasized individual-level factors (e.g., age, gender, race, etc.) (Fiscella et
al., 2000; Williams & Rucker, 2000), conclusions may be limited by the atomistic
fallacy—failing to consider the context in which individual behavior occurs (Richards,
Croner, Rushton & Brown, 1999).  Moreover, rarely has the role of geography
(place of residence) been examined in the context of health inequalities. Yet recent
information indicates that health care patterns in the United States depend more on
where individuals live than on their needs or preferences (Dartmouth Medical
School, 1996, 1998).

Geographic Variation as a Marker of Health Disparities
Currently health disparities are measured uni-dimensionally by racial or

socioeconomic groups, without taking into account their geographic context.  Once
we add the geographic (i.e., two-dimensional) component, the search for spatial
patterns of variation in health disparities is possible.  Since we expect spatial
patterns to arise from geographically defined measures of health status and/or
access to care, we expect that health inequalities in populations will be manifested
as geographic clustering (i.e., nonrandom spatial variability).  Thus mapping
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techniques and formal methods of statistical spatial analysis could be used to assess
the geographic variation of health disparities.  Once such spatial patterns are
identified, they can be investigated ecologically with respect to factors including
socioeconomic characteristics, population behaviors, barriers to access, institu-
tional effects, etc.  This additional layer of information would allow us to more
effectively target and design interventions and/or policies to address the geographi-
cally identified inequalities.

Using GIS and Spatial Analysis for Identifying Health
Disparities

The added value of GIS technology and methods can be appreciated when we
consider the difficulties associated with an ecologic approach to the issue of health
disparities.  In contrast to cross-sectional or unidimensional data, patterns are
difficult to decipher in two dimensions, especially when the data contain random
error (“noise”) from inaccurate records of cases and populations, misallocated
cases and similar data quality challenges.

Four important practical problems arise when we want to use spatially defined
data (Bailey & Gatrell, 1995).  The first of these is the instability of spatial patterns
across geographic scales.  A second challenge is the lack of any natural ordering
or indexing in space—in contrast to time series data, which are evenly spaced and
unidimensional.  This problem translates into a difficulty to define proximity when
we use a set of sites or zones that are distributed irregularly in space.  Moreover,
autocorrelation or (spatial) dependence extends in general over several directions,
not just one.  Third, another set of problems occurs in connection to what happens
on the edge or boundary of our region of concern (county, state, etc.).  The
modifiable areal unit problem arises when data for pre-defined zones—such as
ZIP Codes which are arbitrarily assigned—are used, as the results will be
conditional upon the spatial configuration of the utilized zones.  Finally, another set
of problems arises when we consider the complexity of the geographic “landscape,”
where many physical and human features overlap and/or criss-cross.

Elucidating health disparities, or alternatively, demonstrating improvements in
the health outcomes or access of a population, requires small-area measurements.
This is especially relevant to the tradition of public health where tracking of health
status as well as many public health interventions target communities, i.e., small
geographic areas.  Although difficult, assessing the effectiveness of public health
outcomes or interventions and policies is optimally done at the population level,
rather than the individual level.  Roper and Mays (1999) have pointed out the value
of GIS technology and methods for examining population-level processes and
effects as expressed in the spatial and geographic distribution of populations and/
or communities.  GIS-based methods “often provide more accurate and unbiased
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measures” (p. vi) of health processes than conventional approaches, which do not
take into account spatial dependencies in the data.

Finally, if health outcomes or health care access are mapped for small areas,
such as ZIP Codes, census tracts or census block groups, the estimated statistics
become unstable as they are based on increasingly smaller populations. When they
are displayed on a map, readers may incorrectly infer that existence of a geographic
pattern identifying locations for targeted interventions (Bithell, 2000; Kulldorff,
1999).  Data can be mapped using larger geographic units to alleviate this problem.
For example, state-and county-level maps are usually produced to display health
statistics.  However, these maps have limited value for detecting high-or low-rate
areas that are either found within part of a county, or that cross county boundaries.
Thus, by using traditional approaches we incur in the loss or dilution of local detail
important in identifying at-risk populations.

As an alternative, through advanced techniques of spatial analysis (GIS), we
can capture and display small-area statistics while maintaining the stability of the
estimated rates.  Spatial filtering (“smoothing”) is one such technique that can be
used to increase statistical power by borrowing strength from space (i.e., neighbor-
ing zones) (Rushton, 1997).  Other approaches such as density-equalizing methods
(Dorling, 1994; Merrill, Selvin, Close & Holmes, 1996) or empirical Bayesian
estimation (Yasui, Liu, Benach & Winget, 2000) have been proposed.

Even after data smoothing, since geographic variability can arise by chance,
formal testing for spatial randomness is required to identify likely —statistically
significant— clustering (Anselin, 1996; Chou, 1997; Odland, 1988).  Statistical
tests of spatial randomness fall under two main types: focused and global (Kulldorff,
1999).  While the former attempts to ascertain the geographic locations of clusters,
the latter detects a general tendency toward clustering —without pinpointing the
precise location of the clusters.

In addition, health geographics relates to human populations (Cressie, 1993).
This fact gives population density a crucial importance.  Sometimes apparent
geographic patterns may be observed simply due to the spatial variation in the
distribution of the population; in other words, population density acts as confounder
(Lawson, 2001).  Talbot, Kulldorff, Forand and Haley (2000) have recently
proposed a method for explicitly incorporating population density into adaptive
kernel estimation techniques.

GIS technology and methods enable the exciting convergence of multidisciplinary
perspectives to the issue of health disparities.  GIS-based approaches can help
health researchers, practitioners and policy makers acquire new insights into
eliminating health disparities and developing new ways to apply our existing
knowledge toward this goal.  Next, we will illustrate the benefits of a GIS-based
approach by examining kidney transplantation in California.
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BACKGROUND ON ORGAN TRANSPLANTATION
Rapid advancements in organ transplant technology, access to transplantation,

greater educational awareness and proactive legislation supporting donation and
equitable allocation have dramatically increased the demand for organs. Unfortu-
nately, the supply of organs has not kept pace with the burgeoning number of
transplant candidates on the waiting list.  Despite modest increases in the number
of donors, recent projections indicate that the current shortage for solid organs will
worsen (Niemcryk, Aronoff, Marconi & Bowen, 1994).

Recently, the Centers for Medicare and Medicaid Services (CMS), formerly
the Health Care Financing Administration (HCFA), submitted a final ruling on the
organ allocation criteria of the Organ Procurement and Transplantation Network
(Final Rule, 42 C.F.R. Part 121, 1998).  This ruling is aimed at improving the
equitable allocation of organs for transplantation nationally. Under the provisions of
this rule, organs will be allocated according to objective standards of medical status
and need, irrespective of where the organs are procured or harvested.  According
to the American Medical Association Council on Ethical and Judicial Affairs, Ethical
Opinion E-2.16 on Organ Transplantation Guidelines states: “Organs should be
considered a national, rather than a local or regional resource. Geographical
priorities in the allocation of organs should be prohibited except when transporta-
tion of organs would threaten their suitability for transplantation (Point #6; http://
www.ama-assn.org/ama/pub/category/2503.html, under Entering Keywords us-
ing Policy Finder).”

The focus of existing organ allocation research has primarily been on medical
criteria while making the assumption that donor management practices and
allocation methods are similar among organ procurement organizations (OPOs)
and  transplant centers.  Most of this research has been cross-sectional in design
and has focused on identifying clinical predictors of allocation, while negating pre-
existing “local first” or regional practice constraints existing in the transplant
community. While this pattern and its fallacy has been documented by Ozcan et al.
(1999), our research is, to our best knowledge, among the first to employ a
geographical or GIS approach to health disparities in organ allocation.

TRANSPLANTS AND MEDICAL NEED:
DO THEY CORRESPOND?

One of best ways to illustrate the current health disparities in organ procure-
ment and transplantation is to use the data on the underlying illness, such as End
Stage Renal Disease (ESRD) as a ‘proxy’ for demand for new kidneys. Actual renal
transplantation is then compared to the “need” and used as a model for the
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assessment of geographic disparities (Ayanian, Cleary, Weissman & Epstein,
1999; Dartmouth Medical School, 1998).  Another plus to using this organ as an
example is that unlike other medical procedures, all patients with ESRD are
assessed for transplantation. Therefore, all potential candidates for transplantation
can be located.   Since kidney transplants account for over half of all organ
transplants in the United States, this organ reflects many of the existing challenges
faced by those on the national organ waiting list.  According to the End-Stage Renal
Disease Network, Regions 17 (Northern California) and 18 (Southern California),
as of June 30, 2000, the number of persons with ESRD waiting on a kidney in
California was 8,427.  To better grasp the magnitude of these state numbers,
consider the prevalence of ESRD nationally.  On September 14, 2001, the United
Network for Organ Sharing (UNOS) National Patient Waiting List included
49,919 persons waiting for a kidney transplant.  Estimating the cost of providing
renal replacement therapy to this population gives a clear picture of the health policy
consequences of this illness with a cost of $7.3 billion in 1990 for 200,000 patients.
By 1997, Medicare spent $11.76 billion a year on ESRD patients, a significant
increase in spending from the early nineties (Tell, Hylander, Graven & Burkart,
1996).

The literature on ESRD provides compelling evidence about health disparities
among ESRD patients.  These disparities include the customary renal replacement
therapy as well as the distribution of renal transplants.  Disparities are in disfavor of
African Americans who unfortunately have a higher incidence and prevalence of
ESRD (U.S. Renal Data System, 1999). Although comprising about 15% of the
U.S. population, African Americans account for 37% of the ESRD population.
Notwithstanding this need, African Americans were found to be less likely than
whites to be referred for evaluation for renal transplants.  Moreover, of those who
are considered appropriate for transplantation, African Americans were signifi-
cantly less likely to be referred for evaluation.  Overall, African Americans receive
less than 25% of cadaveric kidneys, and about 14% of kidneys from living donors
(Young & Gaston, 2000).  Similarly, supporting data are available on renal
transplants between the period of 1987 and 1995 (Scantlebury, Gjertson, Eliasziw,
Terasaki, Fung, Shapiro, Donner & Starzl, 1998).  We believe that such patterns
are not accidental or based on medical need issues alone as assumed by Reddan,
Szczech, Klassen and Owen (2000), who argue that since renal transplants are
provided by a single health care provider (i.e., Medicare), transplantation dispari-
ties are eliminated.  We believe such an assumption to be erroneous.  For example,
when comparing the United States experience with ESRD to the United Kingdom,
the rate of renal replacement (transplantation) among African-Caribbeans and
Asians is three to four times higher than whites (Raleigh, 1997).  This high utilization
was explained by need rather than by proximity to renal units.
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We know that organ transplantation varies by factors related to the health care
delivery system, organ acceptance and rejection criteria, proximity to transplanta-
tion centers, local organ donation rates, organ assignment policy and the demo-
graphics of the donor pool (Reddan et al., 2000). While much of the existing
disparity is attributed to the biologic differences of susceptibility to developing
ESRD among certain races, this does not however account for all of the disparities.
This leads many researchers to conclude there are inherent systemic barriers within
the health care system, including the possibility of treatment bias in physician
practice patterns. Transplantation inequalities among the African American popu-
lation may imply subsequent inequalities in optimal care.  It is also likely that such
disparities are not limited to African Americans, but include other minority racial/
ethnic groups as well.

RENAL TRANSPLANTATION AS A MODEL FOR
HEALTH DISPARITIES: A GEOGRAPHIC

ASSESSMENT OF KIDNEY TRANSPLANTATION
California Organ Procurement and Transplantation Network (OPTN).

As a geographic reference, Figure 1a shows the main seven urban areas in
California: Los Angeles, San Diego, San Jose, San Francisco, Long Beach,
Oakland and Sacramento.  California’s OPTN is located within Region 5 of the
United Network for Organ Sharing along with four other Western states—Arizona,
Nevada, Utah and New Mexico (Figure 1b).  Four organ procurement organiza-
tions (OPOs), located in large metropolitan areas with high population density,
cover a remarkable service area of over 32 million people.  The two northern OPOs
are located in San Francisco, the Bay Area and Sacramento.  The two southern
OPOs are located in the Greater Los Angeles Area and the San Diego Metropolitan
Area. Each OPO serves a CMS-defined service area where potential donors are
generated from local hospitals by referrals of cadaveric solid organs (i.e., heart,
lung, kidney and pancreas).  Interspersed within this vast OPO network are 25
affiliated transplant centers (Figure 1c).  It is within this geographically defined area
that we will examine the effectiveness of existing organ allocation practices across
the transplantation network.

Measures for Assessing Health Disparities. In order to assess kidney
transplantation, we used California Office of Statewide Health Planning hospital
data (1995–1998) and U.S. Census derived population estimates.  Hospital patient
discharges were the unit of service used as a reasonable proxy for the prevalence
of the disease, ESRD and of access to kidney transplantation, the optimal treatment
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for persons with ESRD.  Dialysis, although a life-extending therapy, exacts its own
toll on persons with renal failure.

ESRD and transplantation cases were identified and extracted by their
corresponding ICD-9 CM codes.  The following codes were used:
1 ESRD, Not Otherwise Specified—Code 585
2 ESRD with Manifestation of Diabetes—A two-code combination of 585 and

250.40-250.43
3 ESRD Due to Hypertension—Codes 403.00, 403.11, 403.91
4 ESRD with Hypertensive Heart and Renal Disease—Codes 402.02, 404.03,

404.12, 404.13, 404.92, 404.93
5 Kidney transplantation—Code 55.69

After excluding out-of-state cases, the retained discharge events were then
geocoded to GIS maps of California ZIP Code boundaries made using files from
Geographic Data Technologies (GDTs).  The processed data set contained
388,443 ESRD discharge events, including 5,161 kidney transplant procedures
(1.3 percent of the total). The variable of interest is access to renal transplantation,

Figure 1: Map of California and its major cities (A). California’s Organ
Procurement and Transplantation Network is located within Region 5 of the
United Network for Organ Sharing (UNOS) (B). California’s Transplantation
Network consists of four OPOs and 25 affiliated transplant centers that serve
over 32 million people (C).
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defined as the proportion of kidney transplant procedures, and whether this
proportion varies geographically across California.  This measure, which identifies
the relationship between utilization and underlying disease, is the most direct, and
ultimately, one of the most relevant measures of access (Eggers, 1995).

In general, it is desirable to have the individual locations of cases and underlying
population rather than using data aggregated to areas such as ZIP Codes or
counties.  The results will have better spatial resolution since they are not dependent
on the location of the area’s centroid point.   We applied a technique described by
Talbot et al. (2000) to alleviate the problem of arbitrariness in assigning the
geographic location of ZIP Code centroids.  Population-weighted centroids were
calculated for each California ZIP Code using 1990 census data at the census block
level. For each ZIP Code, we summed the number of kidney transplants as well as
the total number of ESRD occurrences.  All ESRD discharge events in a particular
ZIP Code polygon were then assigned to the geographic coordinates of the
population-weighted ZIP Code centroid.

Spatial Smoothing Techniques.  Smoothing or spatial filtering  is a descrip-
tive technique to map data collected within small geographic areas and still maintain
the stability of the estimated health parameters.   The estimated rate or ratio of the
variable of interest at a particular location, or grid point, is calculated by incorpo-
rating information about the observed data at neighboring areas within a fixed
distance from the location in question.  Discs centered at specific locations are set
to overlap to allow neighboring points to share observations.  Contouring or
advanced GIS functions to process raster data can then be used to produce
smoothed maps where geographic trends are recognizable.  In the end, ‘smoothed’
maps more clearly represent the continuous distribution of the underlying illness as
a naturally occurring phenomenon, without the administrative boundary constraints
of ZIP Codes.

Building upon the ideas proposed by Rushton and Lolonis (1996), Rushton,
Krishnamurthy, Krishnamurthy, Lolonis and Song (1996), Kafadar (1996, 1999)
and McCleary, Soret, Rivers and Montgomery (2001), we have adapted the
techniques recently presented by Talbot et al. (2000) to implement a GIS-based
adaptive kernel estimation method for creating smoothed maps of kidney transplan-
tation access in California (Bailey & Gatrell, 1995; Breiman, Meisel & Purcell,
1997).  In these maps, the spatial filter (or kernel) is defined in terms of near constant
population sizes rather that constant geographic size.  In other words, the discs
containing the clusters of data are larger in sparsely populated areas compared to
urban areas.

The geographic unevenness of California’s population density can be ob-
served in Figure 2a, from the very sparsely populated Sierras and deserts on the
eastern half of the state, to the very densely populated metropolitan areas along the
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Pacific coast.   For example, San Francisco has more than 6,000 people per square
kilometer, Los Angeles 5,000, while several rural towns have less than 0.3 persons
per square kilometer.  This makes California an ideal geographic region for
illustrating the application and performance of spatial filtering methods when there
is heterogeneity in the population density.

We compared the smoothing technique using a variable window size with the
fixed geographic size approach.  For both methods we used a 2 km grid for the disc
centroids.  The grid contained approximately 120,000 points, which covered the
state, along with a 2-km buffer around the state line.

Calculation of Standard Risk Ratios.  An indirectly standardized relative
risk ratio—traditionally, a standardized morbidity/mortality ratio (SMR)—is de-
fined as a function of the “risk” in receiving a kidney transplant incurred by a
randomly selected ESRD patient residing at a certain ZIP Code relative to the
average “risk” in California as a whole (Bithell, 2000; Lawson, 2001).  SMRs with
values greater than 1 indicate local transplantation activity above the state average,
while SMRs with values less than 1 indicate transplantation activity below the state
average.

SMRs were derived from counts of the number of kidney transplant proce-
dures that occurred from 1995-1998 for ESRD discharge events by ZIP Code. For
both smoothing techniques applied here, we calculated the standard incidence ratio
for each point.  The study area was covered by a fixed number of evenly spaced
grid points.  Let ni be the number of ESRD events captured at grid point i and let
N be the total number of ESRD discharge events in the state.  Likewise let ci be the
number of kidney transplantation procedures captured at the same grid point i while
C is the total number of kidney transplantation cases in the state.  The unadjusted,
standardized morbidity risk ratio, SMR, is:

SMRi = (ci/ ni)/(C/N)

To take into account demographic differences among regions, ratios were
adjusted for differences in age, sex and race/ethnicity (Eggers, 1995; Thamer,
Henderson, Ray, Rinehart, Greer & Danovitch, 1999).  The above equation was
modified accordingly to incorporate the three covariates: age, sex and race/ethnicity
(Kulldorff, 1999).

Comparing Approaches to Data Handling:
1.  Spatial Filters with Constant Diameter.  This method captures all

transplantation and ESRD discharge events within a fixed geographic radius of the
grid point.  The kernel size was set to 20, 90 and 205 km, respectively. The latter
is the smallest radius that will capture at least 500 ESRD discharge events at each
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grid point.  This is rather large due to the sparsely populated areas of the state’s
northern and eastern mountainous regions and southeastern deserts (see Figure 2a).

An unsmoothed map is supplied in Figure 2b, showing the SMRs for each
individual ZIP Code.  There are several areas of high incidence scattered around
the state, with no easily interpretable pattern.  Since the ratios are unsmoothed, the
SMRs are unstable for most areas, except for ZIP Codes with the largest
population.  If there is any true geographic variation of importance, it is hidden, and
nearly impossible to distinguish from what could be described as random spatial
noise.

Figure 2c shows the smoothed map using a fixed geographic filter size of 20
km.  Areas that appear “blank or clear” represent regions where no ZIP Code
centroids were found within 20 km of the grid points.  In the most rural areas of the
state, this map is similar to the unsmoothed map in Figure 2b, with equally unstable
SMRs.  Dark patches can be observed in some of the sparsely populated eastern
counties, along the border with Nevada.  In the urban areas, a considerable level
of smoothing has been achieved, furnishing more stable SMRs than in Figure 2b.
Please note that in the most densely populated areas such as Los Angeles, the ratios

Figure 2: Map showing population density in California, with county lines
added for geographic reference (A); kidney transplantation standard morbidity
(relative risk) ratios by ZIP Code, unsmoothed (B), and using a fixed filter size
of 20 km at each grid point (C).
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may be oversmoothed, masking any real differences in SMRs within the city.
To alleviate the problem of unstable ratios in rural areas, we increased the size

of the spatial filter.  The maps in Figure 3 were generated using fixed filter sizes of
90 km and 205 km in order to reduce random noise for all grid points.  The spatial
variation in the distribution of the SMRs has been reduced considerably.  The
highest level of smoothing (see Figure 3b) removed most of the random noise in the
rural areas of eastern California. Overall, this map does not convey much useful
information in determining the spatial pattern of kidney transplantation SMRs.

2. A Spatial Filter with Nearly Constant Population Size.  This method
sets, a priori, a minimum number of ESRD discharge events to capture at each grid
point.  The nearest ZIP Code centroids are successively located and the number
of ESRD discharge events added until it reaches a value greater than or equal to the
minimum number that has been established.  The number of ESRD cases will exceed
the predetermined minimum if the last ZIP Code area captured has more events than
needed to reach the minimum denominator size.

We tested this method using three population-based kernel sizes, which were
set at minimum number of 500, 1,200 and 10,000 ESRD events, respectively.  For

Figure 3: Kidney transplantation standard morbidity (relative risks) ratios
using a fixed filter size of 90 km (A) and 205 km (B) at each grid point.
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example, if 500 ESRD discharges were captured, the expected number of kidney
transplants is 6.5 at the grid point if the rate within the circle is the same as the overall
California rate of 1.3 renal transplants per 100 ESRD discharge events.

The smoothed SMR map using the spatial filter with nearly constant population
size of 500 ESRD cases is displayed in Figure 4a.  Many of the areas that had a high
SMR in the unsmoothed ZIP Code map (Figure 2b) are no longer seen.  This
suggests that these elevations were likely due to random fluctuations of the ratios
because of small numbers of renal patients within a ZIP Code area.  Some elevated
areas remain though, most prominently in parts of San Diego and San Jose, where
kidney transplantation is in some cases more than twice the state average.

To evaluate the effect of changes in filter size, we created maps with different
population kernel sizes.  Maps produced using nearly equal kernel sizes of 1,200
and 10,000 are shown in Figures 4b and 4c.  Unusually high SMRs are tempered
as the population kernel increases.  This is particularly noticeable in the rural areas
where the ZIP Code SMRs were unstable due to the small numbers of renal
patients.  The high SMRs, which remain as the kernel size increases to 1,200 and
10,000 ESRD discharge events, respectively, indicate that these differences are

Figure 4: Kidney transplantation standard morbidity (relative risk) ratios
using a variable kernel size set to capture at least 500 (A), 1200 (B) and 10,000
(C) End-Stage Renal Disease cases at each grid point.
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less likely due to chance.  Once the population kernel becomes too large, this
technique is not useful anymore to detect elevated transplantation ratios in all but in
some of the most densely populated regions of San Diego and San Jose/Bay Area.
This is apparent in Figure 4c in which the kernel size is set to capture a minimum of
10,000 ESRD cases.

Elucidating Statistical Clusters of Kidney Transplantation.  The above
described smoothed maps are purely descriptive tools, showing areas with high or
low access to kidney transplantation, after “filtering out” some of the random spatial
noise.  Spatial patterns of kidney transplantation, however, can be deceiving and
might represent a spurious relationship that occurs by chance.  Additional analytic
tests for spatial randomness can eliminate this rivaling hypothesis.  Thus, to
complement the smoothed maps of ratios, we compared them with the results of
analyzing the same transplantation data using the spatial scan statistic, in order to
elucidate whether statistically significant geographic clusters were retained or
smoothed out.

The spatial scan statistic is a robust test for spatial randomness that determines
the location of any area of California with greater, or less, access to kidney
transplantation, after adjusting for multiple testing inherent in many possible
locations and sizes of the area.  The maximum size was restricted to 10 percent of
all ESRD discharge events in California.  Calculations were done using the SaTScan
software (Kulldorff, Rand, Gherman, Williams & DeFrancesco, 1998). Discussion
and statistical details about this test can be found in Kulldorff and Nagarwalla
(1995), and Kulldorff (1997, 1999).  Recent health applications are presented in
Sheehan, Gershman, MacDougall, Danley, Mroszczyk, Sorensen and Kulldorff
(2000), and Talbot et al. (2000).

The most probable areas where transplantation clusters occur, regardless of
size, are shown in Table I and Figure 5a.  The general areas that have an SMR that
is statistically significant, after adjusting for the multiple testing, also show up as high
SMR regions on the smoothed maps of kidney transplantation with a kernel of
nearly constant population size (see Figures 5b and 5c). Three statistical clusters of

Geographic area Kidney transplants ESRD events SMR P-value
Bay Area/San Jose 316 12,054 1.9 < 0.001
San Diego 379 18,452 1.6 < 0.001
Tahoe 149 7,013 1.6 0.01
South East Los Angeles Co. 346 41616 0.7 < 0.001

Table 1: Results of spatial scan statistic test for more likely kidney transplant
clusters
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greater access to kidney transplantation were identified.  One is located in an area
roughly corresponding to the Bay Area (SMR = 1.9), south of San Francisco, near
San Jose.  A second cluster occurs in San Diego County (SMR = 1.6), which also
extends into some of the desert resort communities of Riverside County such as
Palm Springs.  The third and largest cluster (SMR = 1.6) encompasses several
semi-rural counties east of Sacramento, around the mountain resort area of Lake
Tahoe.

A localized cluster of diminished access to kidney transplantation is in

Figure 5: Likely clusters of access to kidney transplantation using a double-
sided spatial scan statistic (p < 0.05 ) (A). The only cluster of diminished-
access is in Los Angeles County (restrictions: no cluster can contain more
than 10 percent of ESRD cases). Clusters of kidney transplantation overlaid
on a map of smoothed kidney transplantation standard morbidity (relative
risk) ratios based on a variable kernel size set to capture at least 500 (B) and
1,200 (C) ESRD cases at each grid point. Two areas with apparent high rates
of kidney transplantation, along the coast of Santa Barbara and San Luis
Obispo counties, are removed by the spatial scan statistic.
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southeast Los Angeles County (SMR = 0.7), including over 20 populous commu-
nities adjacent to the city of Los Angeles.  This cluster also coincides with a
persistent low SMR region in the smoothed maps (Figures 5b and 5c).  Therefore,
these maps do not smooth over the areas with statistically significant rates except
when filters are set too large.  We see in Figure 4c that by using a large kernel size
of 10,000 ESRD events, the statistically significant areas in the cluster east of
Sacramento are smoothed over (Figure 4c).  When using a fixed filter size though,
areas with a statistically significant SMR are sometimes smoothed out (Figure 3b),
and when they are not, there are others with non-significant SMRs that stand out
prominently or dominate the map (see Figures 2c and 3a).

Correspondence Between Illness and Treatment
How Are Organs Allocated? Geography vs. Medical Criteria. As

discussed earlier, the hotly contested health policy issue in organ transplantation
involves the equitable allocation of organs.  Notwithstanding the importance of
medical criteria, critics have argued about the role of location or geography in
allocation decisions.  That is, should persons who live in a defined service area be
given preference for organs over others who live outside of the OPO’s immediate
network? Both the government and health professional organizations like the AMA
argue in favor of medical necessity as the only criteria for the equitable allocation
of organs.  Assuming equity in health care access currently exists in the U.S.
transplantation network, we now ask the following question: Given natural cluster-
ing of disease occurrence, is kidney transplantation randomly distributed to persons
with ESRD in California?

By applying a spatial scan statistic to kidney transplantation data (1995-
1998), we have demonstrated the existence of statistical clusters as described in the
previous section.  Therefore, the hypothesis of a geographically random distribution
of kidney transplantation is rejected.  In other words, the observation of spatial
clusters implies that geography (i.e., place of residence) plays a role in determining
access to optimal treatment for renal patients in California.  What specific local
factors influence access to kidney transplantation in the cluster regions remain to be
elucidated.  Variation in factors such as local health resources, practices or health
care market structure has been suggested (Dartmouth Medical School, 1998).  The
possibility exists though that, simply, local variation in renal disease might account
for the observed geographic clustering of kidney transplantation.  We explore this
question next.

Elucidating Clusters of End-Stage Renal Disease.  Once again, the
important question is whether or not the distribution and utilization of health care is
explained by the underlying illness.  In other words, does the pattern of variation in
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access to kidney transplantation (i.e., treatment) bear a relationship to the distribu-
tion of the underlying illness (i.e., ESRD)?  Theoretically, treatment should
correspond to a higher presence of ESRD in local populations.  If after controlling
for gender, age and race/ethnicity, clustering of ESRD patients can be demon-
strated, the key question of whether illness and access correspond can be
investigated by assessing the geographic agreement between ESRD and transplan-
tation clusters.

Using the same techniques already described for the detection of transplanta-
tion clusters, we applied the spatial scan statistic to ESRD hospital discharge data
in order to assess the spatial clustering of renal disease in California.  Denominators
corresponding to the underlying “at-risk” population by ZIP Code were based on
1997 updates of U.S. Census statistics for California (Claritas, Inc., Arlington,
Virginia).  The SaTScan software has built-in functions that adjust for population
changes between inter-censual years (Kulldorff et al., 1998).  As before, the

Table 2: Results of spatial scan statistic test for more likely ESRD clusters

Geographic area ESRD events Total population SMR P-value
Oakland 18369 961828 1.4 < 0.001
Los Angeles/Pasadena/San Fernando 41891 4223720 1.2 < 0.001
Napa 434 6040 8.3 < 0.001
South East Los Angeles Co. 13873 1113343 1.3 < 0.001
San Diego 14527 1204105 1.3 < 0.001
Los Banos/Merced 3016 212074 1.7 < 0.001
Marysville/Yuba City 1501 94898 1.9 < 0.001
Carson/Long Beach 6959 542558 1.3 < 0.001
Hanford/Visalia 2820 224311 1.5 < 0.001
Modesto 2413 202162 1.5 < 0.001
Yucca Valley 1220 68662 1.7 < 0.001
Fremont/Newark 2177 181027 1.4 < 0.001
Glendora 528 32741 2.1 < 0.001
Ukiah 1664 121864 1.5 < 0.001
Eureka 62 562 13.1 < 0.001
Beverly Hills/West Hollywood 3038 237934 1.3 < 0.001
Artesia/Bellflower/Norwalk 2913 263402 1.3 < 0.001
West Covina 2372 207129 1.3 < 0.001
San Bernardino 516 35535 1.7 < 0.001
Tracy 702 62539 1.6 < 0.001
Upland 784 60618 1.5 < 0.001
Vallejo 1804 117644 1.3 < 0.001
Petaluma/Santa Rosa/Rohnert Park 2009 221756 1.2 < 0.001
Victorville 921 75125 1.3 < 0.001



Understanding Health Disparities through GIS   31

maximum size of the scan window was set again to 10 percent of the underlying
population.

The most likely ESRD clusters, irrespective of size, appear in Table II and
Figure 6a.  Twenty-four clusters are scattered from north to south, largely on the
most western portion of the state, corresponding to the more densely populated

Figure 6: Clusters of ESRD using a double-sided spatial scan statistic (p <
0.001), indicating medical need (A). Clusters of ESRD, of greater access than
the state average, and of less access than the state average, are shown
together to assess the spatial correspondence between medical need and
access to treatment (B). For the most part, clusters of renal disease do not
overlap with clusters of greater access to kidney transplantation. Near Los
Angeles, a cluster of poor access to transplantation overlaps with small
clusters of renal disease. ESRD clusters are overlaid on a map of smoothed
ratios (population kernel size of 1,200) to reveal the underlying cluster-
specific transplantation activity (C). Only five renal disease clusters (stippled
circles), three in north and two in the south (see bottom inset), occur in areas
with greater access to kidney transplantation than the state average.
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regions.  These clusters are indicative of medical need, identifying areas where renal
disease presence is elevated with respect to the state average.  The size of the
clusters seems to be related to population density, being smaller in urban areas, and
larger in less densely populated areas.  We compare next how the detected ESRD
and transplantation clusters correspond.

Comparison of Results.  Figure 6b shows a map overlay of ESRD and
kidney transplantation clusters.  It can be observed that of the three clusters of
greater access to transplantation, only the one in San Diego corresponds with a
cluster of renal disease in the greater San Diego metropolitan area.  The other two,
around the San Jose and Lake Tahoe areas in northern California, occur in regions
with no ESRD clusters. The cluster of less access to transplantation identified in
southeastern Los Angeles County overlaps with, and is surrounded by, small urban
clusters of ESRD.  This seems to be a region of concern for public health officials
and policy makers, with overlap of higher-than-expected levels of underlying illness
and poor access to treatment.  Thus one can clearly see how GIS can be used to
identify areas of concern for revisiting existing policy and practices.

In addition to spatially comparing both types of statistical clusters, we further
explored the correspondence of renal disease and access to treatment by investi-
gating transplantation activity inside the ESRD clusters.  Figure 6c shows the ESRD
clusters overlaid on a map of smoothed transplantation ratios that are derived by
using an adaptive kernel of a nearly constant population size of 1,200.  Visual
inspection of this map reveals that clusters occur in areas where the smoothed
SMRs are below the state average.  The results of this technique suggest agreement
with the earlier noted lack of general correspondence between illness and treat-
ment.

Some clusters may include more than one SMR range (see Figure 6c), with one
zone, for example, representing greater access to transplantation, next to a zone of
diminished access.  We further characterized ESRD clusters by applying GIS
analytical functions for calculating zonal statistics to the 2-km grid from which the
smoothed transplantation maps were derived.  Thus, we identified ESRD clusters
enveloping grid points with maximum SMRs greater than 1, that is, with greater
access than the state average.  Table III contains the 11 identified ESRD clusters.
In addition, with the aid of GIS spatial functions, we calculated cluster-specific
transplantation SMRs based on patient discharge data captured inside each of the
11 ESRD clusters.  These ratios can be also found in Table III.  Out of the 11
clusters, only five have SMRs greater than 1, indicating greater access than the state
average.  Three of these five ESRD clusters with elevated transplantation SMRs are
located in northern California.  They can be seen in the top inset of Figure 6c.  They
correspond to the geographic areas of Freemont-Newark and Tracy-Livermore,
north of San Jose, and Petaluma-Santa Rosa-Rohner Park, north of San Francisco.
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The remaining two clusters are located in southern California, one in Beverly Hills
(see bottom inset in Figure 6c), west of Los Angeles, and the second one in the
greater San Diego area.  Note that the elevated transplantation SMR in the San
Diego area has been also identified as a statistical cluster of greater access
paralleling the ESRD cluster.  Interestingly, these areas have in common higher-
than-average income and general SES levels of the target population.

DISCUSSION

The Value of a GIS Model of Health Disparities
Figure 7 shows with greater geographic detail the three main metropolitan

areas of the state, combining the locations of both types of clusters, ESRD (medical
need) and transplantation (access to treatment), with the transplantation centers
(health care resources).  The greater Los Angeles metropolitan area shown in
Figure 7a illustrates a situation where medical need is apparent.  Several ESRD
clusters are matched by one cluster of diminished access to transplantation.  The
greatest concentration of transplantation centers of the state does not ensure
adequate access to treatment for the renal patients of the region.

Figure 7b shows the San Francisco and San Jose metropolitan areas.  In this
region we observe also the presence of several ESRD clusters, indicating medical

Table 3: Underlying cluster-specific kidney transplantation ratios, SMRs, for
ESRD clusters, which exhibited a maximum SMR greater than the state
average.

Geographic area Max. SMR SMR
Fremont/Newark 1.5 1.5
San Diego 1.5 1.2
Tracy 1.4 1.1
Beverly Hills/West Hollywood 1.2 1.1
Petaluma/Santa Rosa/Rohnert Park 1.4 1.1
Ukiah 1.3 1.0
Modesto 1.0 1.0
Los Angeles/Pasadena/San Fernando 1.4 0.9
Oakland 1.5 0.8
Los Banos/Merced 1.3 0.6
Hanford/Visalia 1.0 0.5
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need.  However, they do not correspond geographically with the location of a
cluster of greater access to transplantation approximately encompassing the Silicon
Valley.  Interestingly, neighboring this transplantation cluster is an ESRD cluster
stretching across both shores of the San Francisco Bay, from Oakland to east San
Francisco.  The two prominent transplantation centers of this region are precisely
sitting in this cluster of need.  Figure 7c shows the San Diego area, which unlike the
two previous regions represents a case where need and access correspond.  This
is accomplished with fewer health care resources, as only three transplantation
centers operate in this region of the state.

In summary, the high/low SMR clusters we identified do not correspond
geographically to the underlying illness (ESRD).  Our analysis suggests that the

Figure 7: The three main metropolitan areas of the state, Los Angeles (A), San
Francisco/Bay Area (B) and San Diego (C), are shown in detail combining the
locations of both ESRD (medical need) and transplantation (access to
treatment) clusters, shown together with the transplantation centers (health
care resources). Transplantation centers are displayed as dark circles (with
a black dot) of varying diameter according to annual kidney transplantation
activity. The three top renal transplantation centers within each region are
identified.
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likelihood to receive a kidney transplant does not necessary follow the presence of
renal disease. Both smoothing techniques and statistical tests of spatial randomness
reveal these trends.  This suggests that geography seems to play a role in access to
kidney transplantation.

The results of our analysis lead us to conclude that geographic health disparities
in California suggest local biases.  Repeating the popular adage that “all health care
is local” bears a surreal truth.  We must study the local characteristics of health care
delivery and other geographic factors known to affect health.  Understanding these
clusters of activity may determine our ability to successfully address health
disparities on a macro-level. Geographic Information Systems add value to the
more accurate and comprehensive treatment of health disparities.

Practical Considerations in Implementing a GIS Model of
Health Disparities

There are several recommendations we would make to GIS analysts and
health geographers exploring a similar spatial model of health disparities:

One Size Does Not Fit All.  Caution: there is no intrinsic size that can be used
to smooth all maps in every situation.  The choice depends on the nature of the health
phenomena being studied, the size of the study area and other considerations.  If the
filter is too large, it may eliminate true variation, while too little smoothing will leave
random noise in the data.  Since smoothed maps are primarily descriptive tools,
different amounts of smoothing should be tested to see different types of spatial
patterns (Figures 4a-c).

Spatial Filtering. Spatial filtering based on windows with a nearly fixed
population size are more appropriate for mapping health events in regions, like
California, with widely varying population density, than methods based on a fixed
geographic kernel size.  First, random “noise” in rural, sparsely populated areas, is
smoothed to the same level as in urban, densely populated areas, while at the same
time enhancing the spatial resolution of urban area estimates.  Second, all estimates
throughout the study area are approximately equally reliable because the variances
of the estimates depend on the population size at risk (Talbot et al., 2000) —which
is nearly equalized by this technique.

Population Density. A shortcoming of the population density equalizing
method is that the regional map will not have the same resolution throughout, with
urban areas based on small windows, and rural areas on much larger ones (see for
example, Figure 4a).  For example, a map showing a high SMR in a rural area on
the northwestern corner of California may give the mistaken impression that the
elevation is local in nature, when in fact the rate is based on a much larger territory.
Thus, we recommend caution when interpreting these maps.  Researchers studying
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regions with a homogeneous population density, or focus on densely populated
urban areas, may want to use fixed geographic filter sizes.

Use Spatial Statistics to Test Observed Geographic Patterns. Geo-
graphic approaches to the study of health processes should always be comple-
mented with statistical tests for spatial randomness to determine whether the
observed patterns are due to chance or not, and to identify elevated areas (clusters)
that are statistically significant.  We applied a focused test, the spatial scan statistic,
and determined which of the high and/or low areas observed by the smoothing
technique were likely random occurrences, and which were statistically significant
after adjusting for the multiple testing of many possible cluster locations and sizes.

Smoothed Maps Still Yield Valuable Information.  The use of tests for
spatial randomness does not mean that the smoothed maps of rates should be
discarded altogether, since the general pattern can be useful for generating
hypotheses about the cause of the spatial variation.  For example, note a persistent
area of elevated ratios straddling across Santa Barbara and San Luis Obispo
counties, along the coast, between Los Angeles and San Francisco.  While this
region was not statistically significant, further investigation might be appropriate in
order to determine whether or not it shares relevant health care market or
sociodemographic characteristics similar to the other areas of greater access to
transplantation.

Go Further: Multi-Analytic Methods Are Better.  It is important to realize
that the smoothed maps do not show the areas with elevated SMR per se, but the
locations of centroids for which the surrounding circles of a specified size contained
an elevated ratio.  The precise boundaries of different areas with different SMRs
cannot be elucidated from the smoothed maps.  These techniques only suggest the
general location of areas of higher/lower SMRs.  More importantly, these tech-
niques, being descriptive in nature, do not provide the cause underlying geographic
variability. The result is an additional tool to alert the researcher to the need for
further study and testing of assumptions.  Further study is then needed through
detailed analysis of socioeconomic, behavioral or health care factors associated
with kidney transplantation in these populations.

Advantages of Using a GIS-Based Approach
Why state the obvious?  We think this message needs to be explicitly stated.

Specifically, we strongly believe that the full potential of GIS is being underutilized.
There are situations in health services research and practice (e.g., organ transplan-
tation) where some of the more advanced GIS functions can indeed improve our
basic understanding and in the end outcomes. GIS are not only useful for mapping
and database management activities, but, more importantly, for performing spatial
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analysis.  GIS already is a powerful analytical tool for a wide variety of disciplines
that deal with spatial phenomena. Using this example we hope to recruit health care
professionals to join other social and behavioral scientists in substantially benefiting
from recent advancements in GIS technology.

A GIS-based approach permits the elucidation and understanding of the
geographic variability of health differences, making possible the precise identifica-
tion of under- or over-served regions.  The populations residing in those regions can
then be characterized demographically and/or socioeconomically using GIS tech-
nology.  Effective planning of intervention strategies customized to specific popu-
lations whose characteristics have been described is thus facilitated.

Geographic differences within groups (e.g., racial/ethnic) or communities can
also be investigated.  For example, non-geographic studies may reveal adequate
access to kidney transplantation for a certain racial/ethnic group as a whole, while
negating or omitting how this same group may experience poorer access to
treatment in localized areas.  In contrast, a whole other group may have poor, but
geographically dissimilar access to health care.  At localized areas, members of the
group may even enjoy adequate access to health services.  Thus, GIS can
significantly improve the ability to discern such local effects.

Geographic Information Systems enable health researchers and agencies
flexible mapping of health-related outcomes as well as of indicators of health care
access and resources, in order to investigate their geographic variation.  This GIS-
based approach may well become an important part of routine assessments of
health disparities at the community level, to detect areas with high or low rates of
adverse health outcomes, areas where populations are being over-served or
receiving inadequate health care.

CONCLUSION
In closing, we have attempted to share with our readers how GIS can inform

public health policy and practice. Notwithstanding its powerful exploratory and
analytic capabilities, Geographic Information Systems provide the context for the
integration of multidisciplinary approaches and techniques to provide a
clearer, more complete picture of health.  In our case, we combined epidemio-
logic techniques with health services research methods.  The power for visualizing
data elements as well as analytic results provides a more holistic view of the health
disparities problem, suggesting areas or issues that require further elucidation.  In
addition to answering specific questions about health differences, a GIS approach
enables researchers to explore potential geographic policies and practices that may
contribute to the existing health disparities.  When combined with multi-method
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approaches, geographic tools and spatial statistics will offer new analytic opportu-
nities for disease assessment and prevention, and will enhance attempts to plan
more efficacious interventions.
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This chapter describes two case studies that demonstrate how the
technology of Geographic Information Systems (GIS) can be  combined with
community data to address healthcare problems.  The purpose is to present
a model that can be replicated by other hospitals or those with an interest in
promoting the public health.

BACKGROUND
Baystate Medical Center (BMC), located in Springfield, Massachusetts, was

contracted by the U.S. Census Bureau to conduct two case studies to demonstrate
the utility of annually adjusted data  from the American Community Survey (ACS).
In addition, BMC is the sponsor of the Injury Prevention Task Force, a city-wide
collaboration of community, civic and healthcare organizations formed to address
the problem of violence.  Stemming from its dual role in both of these entities, BMC
has access to medical data from the major area hospitals, geographic data from
the City of Springfield Planning Department and community population data
from the ACS.
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Springfield is a mid-sized city in Hampden County, situated in Western
Massachusetts. It has approximately 150,000 people and a surrounding metropoli-
tan area of more than 500,000. Springfield is a major urban center for employment,
culture, commerce and government.  The city has a diverse mixture of racial,
cultural, ethnic and income groups, which characterize different parts of the city.
This makes Springfield an ideal climate for investigating the uses of census data.

The American Community Survey is a survey by the U.S. Census Bureau
patterned on the decenniel census long-form. Data are collected monthly and used
to provide annually adjusted estimates of the population based on a sample of the
population.  Hampden County is one of  31 pilot sites for the ACS, chosen to
demonstrate the utility of yearly data collection. These sites represent diversity in
population size, rate of growth, ease of enumeration and region of the country.

The ACS has several advantages over the decennial census. It provides the
most current available data on population estimates. Yearly publication of updates
allow tracking population shifts over time.  This contrasts with census data, which
can be as much as 11 years old.  This advantage is augmented by the six-month
turnaround for the ACS, which contrasts with a two-year turnaround for census
data. A further advantage is that additional questions are included in the ACS which
are not on the census: these concern school lunch, heating and cooling assistance,
food stamps and public housing. This increases the ability of ACS data to address
community issues.

There are, however, certain limitations in using ACS data that the reader
should keep in mind in reading this chapter.  ACS figures are estimates from a
sample of the population, not exact counts. These estimates are weighted to give
greater representation to areas of greater population size.  Weights for the data
presented in this chapter are based on 1990 Census population proportions. In
2002 they will be revised with 2000 Census weights, resulting in greater accuracy.
These ACS estimates should therefore be used as community profiles with an
emphasis on the relative proportions in each population subgroup. ACS is not a
count of the population but rather  a mechanism for measuring changes and trends
in the population in the interval between decenniel Census counts.  For example, in
interpreting estimates for ethnicity, the focus should be on determining what is the
predominant ethnic subgroup in a geographic area rather than on obtaining a count
of the number of people in each subgroup.

CASE STUDY: INVESTIGATING LATE-STAGE
BREAST CANCER

The first case study for the American Community Survey concerns the
utilization of ACS population and housing data in a GIS to improve breast cancer
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intervention programs.  The methodology for this case study can be used as well
with decennial census data, when available.

Defining the Problem
In choosing a demonstration project, a relevant problem in the community to

be studied had to be defined.   To do this, visualization was employed, using data
downloaded from the Atlas of Cancer Mortality (Devesa et al., 1999). The Atlas
provides the geographic distribution of mortality rates from various cancers in the
U.S. according to race, time period and a variety of geographic subdivisions.  A
type of cancer with high mortality rates over the last 25 years in Massachusetts
would represent a particular problem in the state.  This was the case with breast
cancer in women.  The investigators then looked at the magnitude of breast cancer
mortality in their own county, Hampden County.  While it was not the highest in the
state, still the mortality rate of approximately 30 per 100,000 women was of
significant concern.

To address the problem of breast cancer mortality, it seemed logical to focus
on late-stage disease.  Previous research has clearly established that by lowering
the rate of late-stage disease with increased mammography screening, breast
cancer mortality can be reduced (Feig, 1988; Shapiro, 1994; Tabar, Fagerberg,
Duffy & Day, 1989).

Data from the Massachusetts Department of Public Health (MassDPH, 1999)
showed that the proportion of breast cancer cases with late-stage disease was
higher in Springfield than the rest of the state. From this it was concluded that late-
stage breast cancer in Springfield was a significant public health concern and worthy
of study.  Any findings from this study could be used to plan an approach to
improving breast cancer screening intervention.

The purpose of the present study was to create a profile of communities in
Springfield in need of increased breast cancer screening.  Specifically, the investi-
gators wanted to identify parts of the city with high rates of late-stage disease as well
as identify socioeconomic and demographic factors in late-stage disease.  This
information would aid in resource allocation by focusing intervention efforts on high-
risk areas.  Furthermore, it would aid in the design of socio-demographically
appropriate screening programs.

Study Methods and Results
Data sources for the study are given in Table 1. The City of Springfield Planning

Department keeps accurate, up-to-date geographic data in the form of ArcView
(ESRI, 1999) shape files that were used for police sector boundaries and for
geocoding the locations of cases and mammography facilities. Estimates from the
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American Community Survey performed in 1999 were obtained on various
population and housing characteristics for women over 40. A complete list of ACS
variables for both case studies is given in Table 2.

Data on breast cancer patients was obtained from the oncology registries of
Baystate Medical Center and Mercy Medical Center.  Together these registries
capture approximately 95% of the reported cases in the city.   A list of data items
collected from both registries is given in Table 3.

All cases of breast cancer diagnosed between 1995 and 1999 were included

Data Type Description Data structure File type Source 
Geographic Police sector boundaries 

Springfield streets 
Vector (polygons) 
Vector (arcs) 

ESRI shape file 
“   “    “    “ 

City of Springfield 
“    “   “    “ 

Demographic ACS population and 
housing characteristics  

Table   ASCII text U.S. Census Bureau  
 

Clinical Breast cancer patients Relational database Excel/Dbase Oncology Registries 
 

Table 1: Data sources

Table 2: American Community Survey variables
Households food stamps  

public assistance income 
poverty status 

Families/households median income  
income category 

Housing units occupancy status 
tenure 

Women > 40 age 
race     
ethnicity 
educational attainment  
primary language 
linguistic isolation  
marital status 
employment status 
place of birth/citizenship status Police sectors median home value 

aggregate public assistance 
    income 
aggregate food stamp benefits 

Workers transportation type 

Youths (10-17) linguistic isolation 
primary language 
race 
age 
sex 

 

Geographic  
Information 

street address 
city 
zip code 

Clinical/pathologic date of diagnosis 
stage at diagnosis 
tumor site 
histology 
grade 
side 
size 
nodes examined 
positive nodes 

Demographic   
Information 

date of birth 
age at diagnosis 
sex 
race 
primary language 
ethnicity 
marital  status 

History family history 
smoking status 
alcohol status 
parity 

 
Insurance 

 
primary  

 

Table 3: Registry data for late-stage breast cancer study
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in the study.  Late-stage disease was defined as American Joint Cancer Committee
(AJCC, 1997) Stage 2 or greater.  Case locations were geocoded in the GIS with
Arcview (ESRI, 1999), using addresses obtained from the patient data.

For this study, ACS data for 1999 were used. Data were aggregated at the
police sector level, as this was the smallest geographic unit giving reasonably precise
estimates at the time of the study. There are nine police sectors in Springfield.  ACS
sampling rates for the sectors ranged between 2% and 4% of the total population.

A dot density map was used to visualize the geographic distribution of cases
of late-stage disease to determine where they were concentrated. The spatial scan
statistic (Kulldorff, 1997; Kulldorff, Rand, Gherman, Williams & DeFrancesco,
1998) was used to test for geographic clustering of cases. Although data on case
locations had to be exported from the GIS into SatScan (Kulldorff et al., 1998), the
program output included a geographic file of the most likely cluster locations which
could be easily displayed in the GIS.  This analysis would reveal where raw numbers
of cases were greatest and more resources were needed, e.g., where mobile
mammogram units and educational or other intervention programs would likely
have the highest yield.  Preliminary findings showed no visually or statistically
apparent spatial clustering of cases.  On this basis, a more global approach to
intervention seems warranted.

To account for the size of the underlying population of women over 40 and

Figure 1: Dot density map depicting the case distribution of late stage breast
cancer in Springfield
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estimate the risk of acquiring late-stage disease, ACS estimates were used as the
denominator to calculate the prevalence rate of late-stage disease per thousand
women over 40 for the five-year period. These rates were mapped using choropleth
maps to look for sectors with unusually high rates.  There was one section of the city
with an unusually high rate (7.7 cases of late-stage disease per 1,000 women over
40) and one with a particularly low rate (2.1 per thousand). Further investigation
was needed to determine those sector characteristics that made residents at
particularly high or low risk for late-stage disease.

A spatial regression was conducted using the S-PLUS for ArcView extension
(S-Plus for ArcView GIS 1.1) to test for significant socioeconomic and demo-
graphic factors in the rate of late-stage disease.  It was hoped that this technique
would elucidate the effect of various factors not necessarily apparent by mapping
and identify characteristics of high-risk population subgroups.  The unit of analysis
for the regression was police sector.  ACS estimates for sector population, and
housing characteristics were the independent variables.  The dependent variable
was the rate of late-stage disease per thousand women over 40. To account for the
effect of spatial proximity of the police sectors, we used a first-order neighborhood
matrix.  After running the spatial regression, residuals were checked for evidence
of spatial autocorrelation with the Moran’s I statistic (Cliff & Ord, 1981).

Rates used in this study reflect etiologic factors for overall risk of breast cancer
as well as risk of late-stage disease.  Since the purpose of the study was to target
high-risk areas and population subgroups, it was not necessary to separate out the
causes of late-stage disease from those of breast cancer.

Table 4 shows the results of the spatial regression. There were four significant
factors in late-stage disease: African-American race, presence of a high school
diploma, and foreign-born and married status in women over 40.  These factors
were all positively related to the rate of late-stage disease — rates of late-stage
disease were higher in sectors with high rates of African-American, married or
immigrant women over 40, or those with a high school diploma.  The number of
mammogram facilities in a sector did not affect the rate of late-stage disease in that
sector.

Factor Coefficient T-test Significance 
African-American race 0.0015 8.54 0.0034 
High school graduate  0.0072 19.2406 0.0003 
Foreign born 0.0173 31.0393 0.0001 
Married 0.0106 19.8701 0.0003 
 

Table 4: Results of spatial regression on late-stage breast cancer
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This information is helpful in designing intervention programs.  For example,
since African-American race and foreign-born status are significant risk factors in
late-stage disease, areas of the city with high concentrations of these populations
should be targeted for intervention (Figure 2). The fact that rates of late-stage
disease were higher in areas with a greater proportion of high school graduates
indicates that educational materials should be at a higher educational level so as not
to discourage more educated women from participating. The importance of foreign
birth suggests potential avenues for reaching high-risk women through various
national cultural organizations such as the Greek Cultural Council in Springfield.
Finally, the increased risk for African-American women suggests working with
African-American organizations, many of which already target specific health
problems.

Conclusions
Although the American Community Survey data are only preliminary estimates

based on one year of survey data on a relatively small sample of the population, they
demonstrate the importance of socioeconomic factors in the geographic distribution
of late-stage disease, which is relevant to the design of intervention programs. The
data further suggests that the availability of healthcare resources such as mammog-
raphy does not correlate with predictable trends in breast cancer diagnosis and
staging.  This study shows how geographic and population data can be used to
create a demographic profile of communities by providing denominators for the

Figure 2: Location of high-risk populations in Springfield
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calculation of risks (incidence or prevalence rates), identifying the size and location
of high-risk populations, and providing information on socioeconomic and demo-
graphic characteristics which can be used in analysis to identify risk factors in late-
stage disease.

CASE STUDY: USING GIS AND THE AMERICAN
COMMUNITY SURVEY IN UNDERSTANDING

YOUTH VIOLENCE
A similar approach was used to address the problem of youth violence in the

city.  The aim was to examine factors contributing to youth violence in Springfield
with the ultimate goal of designing more effective violence prevention programs.
Specifically, investigators wanted to identify police sectors with excessively high
rates of youth violence and delineate high-risk population subgroups at which to
direct intervention.  In addition, they wanted to identify factors that contributed to
youth violence.

Analysis was focused on the after-school hours for two reasons.  First,
previous research had indicated that youth violence was most prevalent during this
time period (Snyder, 1997; Weapons-Related Injury Surveillance Report,
1998). Second, community-based youth programs would be available during this
time period.

Study Methods and Results
Geographic and demographic data sources for the study are the same as those

described above.  In addition, geographic data from the City of Springfield Planning
Department was provided on school locations (points) and school districts
(polygons).  Data on violent incidents was obtained from the City of Springfield
Police Department and a list of variables is given in Table 5. The study population
consisted of all violent criminal arrests (which shall be referred to as “incidents”)

Incident Characteristics Offender Characteristics 
Location  Home Address 
Date/Time Age 
Type of Crime Race 
Arrest made Sex 
 Ethnicity 

 

Table 5: Police data for youth violence study
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committed by persons aged 17 and under between the hours of 2 p.m.–7 p.m.,
Monday–Friday from September 1999–August 2000.

GIS mapping was used for two purposes: to indicate areas of increased crime
requiring police vigilance and to help generate hypotheses about factors that might
cause violent crime.  First, the distribution of incidents throughout the city was
visualized with a dot density map, which was overlaid on a map of police sector
boundaries (Figure 3a).  Next, the location of schools was overlaid onto the dot
density map, and a 1,000-foot buffer around the schools was created (Figure 3b).

Figure 3a: Dot density map of violent incident locations overlaid on police
sector boundary map

Figure 3b: Addition of 1,000-foot buffers around schools to incident locations
and police sectors
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The crimes appeared to occur primarily around schools.  One hypothesis to test
would be that crimes occur near schools, and the number of schools in a police
sector was related to the risk of youth crime incidents.

To control for the size of the underlying population-at-risk (10-17-year-olds)
and to estimate the risk of violent crime in each sector, the violent incident rate was
calculated and displayed on a 3D map (Figure 4).  The highest incident rate
occurred in Sector A.  The spatial scan statistic was again used to evaluate the risk
of violent incidents, this time controlling for the underlying total population.  The scan
statistic verified the higher rate in Sector A  (p=0.002).  A relative risk of 2.7
indicates that the rate was 2.7 times higher for this sector compared to the others.

To generate hypotheses about what socioeconomic factors might be related
to the risk of crime in a sector, choropleth maps of the distribution of various
socioeconomic factors from the ACS data were constructed and compared to a
choropleth map of crime rates (Figure 5).  Sectors with the highest incident rates
had the lowest proportions of persons of white race and among the lowest median
household income.   This generated the hypothesis that socioeconomic factors are
related to youth crime.

The next step was to test these hypotheses using spatial regression.  The unit
of analysis was again the police sector.  The independent variables were the various
demographic and socioeconomic police sector characteristics from Table 2.   Two
separate spatial regressions were conducted: one where the dependent variable

Figure 4: 3D map representing the distribution of violent incident rates per
1,000 total population for the nine police sectors
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was the violent incident rate based on the incident location, and one with the rate
based on the offender’s home location.  This would address two questions: what
factors in the offender’s home sector contribute to violence, and what factors
contribute to where violence occurs?

Table 6 (above) gives the results of spatial regression on incident location. The
total number of schools is included in the model to show that it was not significant.
For the significant factors listed, those with a negative coefficient (median household
income) were negatively related to the number of incidents — the lower the median
household income for a sector, the higher the number of incidents in that sector.
Factors with a positive coefficient (total population and black race) were positively
related — the higher the total population (all ages) or black rate per thousand, the
higher the number of incidents in that sector.

Figure 5: Comparison of choropleth maps for incident rates and census
characteristics
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Table 6 (above) gives the results of the spatial regression on the youth
offender’s home location.  Factors with a positive coefficient were positively related
to the number of criminals residing in a sector—the higher the rate (African-
American or white), or total public assistance dollars, the higher the number of
offenders. Total youth population was negatively related—offenders tended to live
in sectors with lower population rates of 10-17 year olds.

Conclusions
This study gives important information that can be used to address the problem

of youth violence in Springfield.  Highlighting areas of increased occurrence of
violent youth incidents by mapping not only can be used to direct police resource
allocation, but can also be used to indicate where intervention programs might be
situated.  Regression analysis of violent incident rates elucidates the socioeconomic
factors contributing to youth violence.  If poverty is a contributing factor, then
designing youth programs for job training and identifying employment opportunities
might be more important than providing after-school activities for youth.  Likewise,
if violent incidents are more likely to occur in neighborhoods where African-
Americans are concentrated, than violence prevention program planners should
work with African-American organizations in the community to address the
problem together.

Factors in  
Incident Location 

Coefficient Std. Error t-statistic  Significance 

Intercept   6.7213 1.9483  3.4498 0.0409  
Number of schools  -1.1612 0.5513 -2.1061 0.1258  
Total population   0.0012 0.0002  5.3579 0.0127  
African-American race   0.0187 0.0054  3.4526 0.0409  
Median household income - 0.0003 0.0001 -4.5807 0.0195  
Factors in Home Location     
Intercept  -68.2814 7.6747 - 8.8969 0.0030 
Median house value     0.0005 0.0001   8.8776 0.0030 
Aggregate public 
     assistance dollars 

    0.0000 0.0000  10.0849 0.0021 

10-17-year-olds  -  0.0013 0.0006 - 2.2659 0.1083 
White race     0.0349 0.0066   5.2926 0.0132 
African-American race     0.0614 0.0072   8.5042 0.0034 
 

Table 6: Results of spatial regression on violent incidents
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SUMMARY: HOW ACS DATA CAN BE USED IN
HEALTHCARE

The two case studies described in this chapter demonstrate that ACS data can
be used in healthcare in a number of ways.  First, ACS population totals provide
denominators for the accurate calculation of risks (incidence or prevalence rates)
for any healthcare problem on which numerator data exists.  Second, ACS
demographic and economic data for geographic units, such as the police sectors
used in the current studies, can be employed in statistical analysis to identify factors
which contribute to increased health risks.  The results can be applied to designing
demographically and economically relevant intervention and prevention programs.
Third, it enables the creation of community demographic profiles by identifying the
size and geographic location of high-risk population subgroups.  This is a tremen-
dous aid in public health planning and resource allocation.

ACS data can be used in additional ways from the ones described in these case
studies.  Demographic profiles of geographic areas created with ACS estimates can
be compared with profiles of existing patrons of community intervention programs
to determine if these programs meet the needs of the populations they serve.  ACS
population estimates can also be used to calculate projections for the size and
location of high-risk demographic subgroups to determine whether, when and
where the need for intervention programs will change over time.  In addition, they
provide timely demographic updates to local community groups as well, to aid in
procuring funding.  This further stimulates other cooperative community arrange-
ments in research and prevention or intervention planning.

The approach described here can be applied with any census geography
(tracts, block groups, etc.) for which ACS estimates are available. This enhances
its usefulness for a number of purposes and geographic scales.  The broad utility of
the American Community Survey in providing accurate and timely data on the
population and the economic environment in which it exists make it an essential tool
in healthcare.  As ACS implementation continues to expand throughout the country,
these benefits will become widely available to state and local public health officials,
hospitals and others in the community with an interest in healthcare.   Hopefully, this
chapter will stimulate them to utilize this data in significant ways to improve the health
and well being of our population.
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    This chapter describes research that uses spatial modeling to address
pressing issues related to a public health understanding of alcohol problems
and violence.  First, we introduce the language of spatial analysis used in
prevention work and discuss the details of spatial research that result in useful
public health information, particularly in regard to alcohol-related problems.
Issues such as geo-mapping, variable selection, and area definition are
discussed in regard to community level occurrence of such problems.
    We then discuss the general context for understanding the geographic
relationship between alcohol outlet density and violent crime.  Finally, we
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give a specific example of an analysis focusing on alcohol outlets and
violence.  This work is related to the major goal of studying the community
geography of alcohol problems by mapping the alcohol environment, relating
these features of the environment to the spatial distribution of problem
events, and analyzing the statistical associations between these measures and
drinking behaviors.

INTRODUCTION
The application of spatial methods to prevention issues in public health is a

potentially powerful approach that is quite complex in terms of data demands and
implementation.  Further, spatial analysis in public health may be considered suspect
as a result of the possibility of ecological bias (that is from only having information
about total exposure and outcomes while individual exposures and outcomes are
unknown).  Nevertheless, spatial analysis addresses an often forgotten or misun-
derstood aspect of public health, the dynamics of people in places.  Usually
epidemiologists examine individual effects of exposures on illness and only include
larger, community-based information as a variable in a multivariate model.  The
implication of such research is that the individual is the only unit of analysis that is
important for helping understand public health problems.  At this point in time,
however, with advances in computer technology, there are ways to more coherently
contextualize the manner in which the individual exists within a larger framework that
is composed of both the human community and the physical reality of the
environment (streets with intersections, dense vs. sparse neighborhoods, high or
low densities of liquor stores or restaurants, etc.).

This broader context of the unit of analysis in public health research is actually
an honored part of the history of modern public health and epidemiology.  John
Snow developed an extensive spatial map delineating water sources for London
(Snow, 1855).  This clearly displayed a possible testable hypothesis for the
characteristic spread of cholera at the time (i.e., the differential use of specific water
suppliers).  Indeed, at the dawn of modern epidemiological/public health research,
spatial analysis was, as a matter of course, naturalistically employed.  This promising
beginning, however, did not evolve into standard practice in epidemiology, as a
more medicalized perspective rose to dominance.

Although it is not difficult to explain why the history of public health in the
previous century has mostly concentrated on the medicalized/individualized sense
of exposure and disease, the demands of public health can no longer allow us to use
such an outmoded approach.  The dynamics of human behavior have been treated
in a too simple manner; excluding the physical/ecological structure in which
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individuals exist degrades our abilities as public health professionals to fully
characterize both problems and possible solutions.  Further, it is not enough to
understand the geography of a particular area, or grouping of areas (no matter the
detail and complexity of such information).   Rather, understanding the dynamic
nature of human interactions (i.e., how the environment in one area affects outcomes
in another) is a critical part of a more comprehensive approach toward prediction
and prevention.  Spatial modeling thus not only includes controlling for spatial
autocorrelations (adjacent or near-adjacent area similarities for a given measure)
but also the possibility of modeling how environmental and socio-demographic
exposures may affect outcomes in adjacent areas.

In the following sections we describe research that uses spatial modeling to
address pressing issues related to a public health understanding of alcohol problems
and violence.  First, we introduce the language of spatial analysis used in prevention
work and discuss the details of spatial research that result in useful public health
information, particularly in regard to alcohol-related problems.  Issues such as geo-
mapping, variable selection and area definition are discussed in regard to commu-
nity-based clusters of current alcohol misuse.  We then discuss the general context
for understanding the geographic relationship between alcohol outlet density and
violent crime, and describe the ways in which previous researchers have addressed
this issue.   Finally, we give a specific example of an analysis focusing on alcohol
outlets and violence as a way to make more tangible specific elements of such a
project.  This work is related to the major goal of studying the community geography
of alcohol problems by mapping the alcohol environment, relating these features of
the environment to the spatial distribution of problem events, and analyzing the
statistical associations between these measures and drinking behaviors.  The
promise of these areas of research is that they lead to greater understanding of the
manifestation of individual problem behaviors in environments that can be regulated
and controlled through science-based environmental preventive interventions
(Gruenewald, Holder & Treno, 2001).

GIS CAPABILITIES AND PREVENTION
A basic understanding of the essential capabilities of geographic information

systems (GIS) is critical to the development of prevention activities because
alcohol-related problems are not evenly distributed across space.  GIS can be
defined as a combination of computer hardware, software, spatial data (digital
maps) and data with a geographic reference (e.g., alcohol outlets, crime locations)
that facilitates spatial analysis.  The key functions of GIS are important because they
provide access to the broad spectrum of potential spatial analyses that can support
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the simple targeting of resources as well as the development of more complex
models of spatial interactions.  Both simple maps of problem rates or clusters and
spatial interaction models may be useful for targeting traditional individual-based
prevention programs or environmental interventions.   Spatial interaction models,
however, may be more appropriate for identifying the locations of events (e.g.,
assaults or crashes) that may be most amenable to environmental or regulatory
prevention.  In addition, GIS capabilities promote the development of a basic
spatial/geographic epidemiology of alcohol use and related consequences, which
is critical to the development of prevention programs.  A brief overview of GIS
functions is presented here (see Wieczorek [2000] and Wieczorek & Hanson
[1997] for more details).

The key functions of GIS presented here  are: geocoding, data overlays,
reclassification function and distance/adjacency measures.  Geocoding is a generic
term used to describe the GIS function of providing a specific location to descriptive
data.  Geocoding applies to point data (e.g., alcohol outlet) as well as to areal data
(e.g., assaults in a census tract).  Sometimes geocoding is known as address
matching because the process of matching points to addresses is very common.  The
advent of the Census Bureau’s TIGER system has made geocoding a relatively low-
cost and widely available GIS function.  However, professional geocoding services
have developed to assist persons who are not comfortable in geocoding their own
data or because of the high cost of updating digital maps based on TIGER in areas
of changing population and new developments.  Krieger et al. (2001) compared a
number of services and found that it is possible to use these services to accurately
geocode data, although there was substantial variation in accuracy between
services.  Geocoding is the most basic of GIS functions because it transforms
descriptive information into a format suitable for spatial analysis.

A GIS-based map may consist of multiple sources of data.  The ability to
combine multiple layers of information is known as the overlay function.  A simple
example of an overlay function is to place geographic boundaries (such as for town
or census tract) on top of individual points representing DWI offenders.  The points
within each area can then be automatically counted to create rate-based maps such
as those shown in Figure 1.  To create rate-based maps from relevant point
information, at least three layers of data are necessary (i.e., map of the points, a map
with relevant boundaries and Census data on population).  The ability to perform
an intersection between separate maps, to aggregate data into meaningful geo-
graphic areas and to link your data to standard sources such as Census data,
highlights some of the processing capabilities of the GIS overlay function that would
be nearly impossible to accomplish by non-automated methods (see Wieczorek &
Hanson [2000] for an example using regions and mortality data).
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One reason for the high potential of GIS in prevention is the capability of the
technology to provide and manipulate visual images.  These are a powerful method
of conveying information.  However, poorly designed images that contain too much
or confusing combinations of data may obscure rather that highlight patterns or
critical information.  The reclassification function of GIS allows the user to easily
manipulate the number of categories or the selection of specific information (e.g.,
crashes by time of day or day of the week).  Figure 1 shows how the reclassification
function can assist in the targeting of prevention by reclassifying the same data, first
as four different categories and then as a single category of the highest rate areas.

 To develop models of spatial patterns and interactions requires accurate
information on the distance between individual objects (e.g., bars and crashes) and
whether areas are adjacent to one another.  This is known as the distance and
adjacency function of GIS, which allows exact distances to be calculated.  Complex
spatial models require these types of data, which can be exported from the GIS as
a file to be used in spatial modeling software.  Adjacency information is often used
to examine the possibility of spatial lags which may show that alcohol-related
problems (e.g., assaults) are related to the characteristics of nearby areas with
specific levels of separation (i.e., spatial lags) (Gruenewald et al., 1996; Lipton &

DW I Conviction Rate (per 10,000)
Highest 10% of tracts

Figure 1. Reclassification  and targetin g p reven tion
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Gruenewald, 2001). Other types of GIS-related functionality (e.g., buffers,
neighborhood characteristics) are a subset of the distance functions.  The neighbor-
hood function calculates the number of a specific characteristic (e.g., assaults)
within a specific radial distance (e.g., 300 yards) of specific point features (e.g.,
bars).  The GIS buffer function uses the distance function on a complex feature such
as the road network to identify points within a set distance of the feature (e.g., homes
of DWI offenders within 400 yards of a bus line).  These relatively simple GIS
functions can be used in highly complex ways to provide new insights into the
generation of alcohol-related problems and for targeting prevention activities to
areas with the greatest need.  The work of Harding and Wittman (1995) provides
an additional example that utilizes basic GIS functions in support of prevention.

Spatial Clusters
Spatial clusters are a greater than expected geographically close group of

occurrences or events (e.g., deaths, crashes, alcohol outlets).  Spatial clusters are
a natural result of spatial dependencies in the data; by definition, spatially dependent
data will have an uneven geographic distribution.  The use of spatial cluster analysis
was pioneered for finding cancer clusters, especially for rare cancers (Aldrich,
1990; Rickett et al., 1994).  Specific spatial clustering techniques can be used with
point or geographic area data and may also be used for space-time cluster analysis
to examine temporal trends (Jacquez, 1994).  Spatial cluster analysis is useful for
identifying areas with significantly high or low rates of alcohol problems where
services can be targeted, to identify new research questions (e.g., why are rates
highest in certain areas), to empirically identify the appropriate scale of analysis in
small area studies and to examine the impact of interventions on communities over
time (e.g., do the clusters change or disappear in response to interventions).

An example of typical spatial cluster analysis is provided in the Grimson cluster
map in Wieczorek (2000).  This analysis indicated that significant spatial clusters
existed in the DWI offender data, but like most spatial cluster techniques did not
identify specific cluster membership.  Two recent spatial cluster analytic techniques
overcome the limitations of the earlier spatial cluster algorithms.  These two methods
are Anselin’s (1995) local indicators of spatial association (LISA) which is
applicable to data on geographic areas, and Kulldorff’s (1997) spatial scan statistic
which is applicable for both point data and areal data.  Anselin’s LISA decomposes
the standard Moran’s I (a general measure of spatial autocorrelation) into local
Moran’s I for each geographic area and provides a statistical test to identify
significant areas.  The LISA method identifies both high rate areas and low-rate
areas which may be embedded in either high- or low-rate surroundings.  Kulldorff’s
spatial scan statistic is a case-control method that compares the spatial distributions
of the cases and controls searching for clusters of cases that significantly differ from
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the spatial distribution of the controls.  The spatial scan approach is especially
flexible in that high-rate or low-rate clusters of any size or shape may be identified.
Also, both LISA and spatial scan explicitly identify cluster membership rather than
clustering in general.

Hanson and Wieczorek (in press) compared the LISA and spatial scan
methods to analyze alcohol mortality data.  The comparison found that the two
methods are largely complementary; the results tended to coincide for both
methods.  It is important to note that low-rate clusters are as important to identify
for prevention purposes as high-rate clusters.  High-rate clusters clearly have
problems that require prevention/intervention; however, low-rate clusters may be
areas at high risk of developing problems, especially if the low-rate area is
embedded in surrounding high-rate areas.  Characteristics of low-rate areas may
also provide important insights into factors important for prevention application in
high problem locations.  Figure 2 shows a map of spatial scan clusters of alcohol-
related mortality in New York.  Note that both high- and low-rate clusters are
identified.  The analysis of county-level data also shows the potential for regional
level prevention approaches.

1

3

1

16

1

1 1

1

7

2

1

7

7

4

1

5

ESSEX

ERIE

LEWIS

ST. LAWRENCE

HAMILTON

FRANKLIN

ONEIDA

STEUBEN

ULSTER

HERKIMER

DELAW ARE

CLINTON

SUFFOLK

OTSEGO

JEFFERSON

OSW EGO

WARREN

SULLIVAN

ALLEG ANY

ORANGE

CATTARAUGUS

CAYUGA

TIOGA

WAYNE

BROOME

GREENE

CHENANGO

CHAUTAUQUA

SARATOGA
MONROE

DUTCHESS

ONT ARIO MADISON

ONO NDAGA

ALBANY

FULTON

COLUMBIA

WASHINGTON

WYOMING

NIAGARA

YATES

LIVINGSTON

SCHOHARIE

GENESEE

SENECA RENSSELAER

TOMPKINS

CORTLAND

ORLEANS

CHEMUNG

NASSAU

SCHUYLER

WESTCHESTER

PUTNAM

MONTGOMERY

ROCKLAND

QUEENS

SCHENECTADY

KING S

BRONX

RICHMOND

NEW YORK

Figure 2. Significant Spatial Scan Clusters of Alcohol-Explicit Mortality

N

30 0 30 60 Miles

Significant Maximum Likelihood Clusters
Clusters of High Rates
Clusters of Low Rates
No Clusters

1 Order of Clusters

Figure 2: Significant spatial scan clusters of alcohol-explicit mortality



64   Lipton, Gorman, Wieczorek & Gruenewald

Other Spatial Analytic Techniques
Two additional approaches deserve mention in the context of spatial analysis

for prevention.  The first technique is a relatively simple method to control spatial
autocorrelation in multiple regression analysis.  The method is to use a GIS to
calculate a generalized spatial potential for the dependent variable used in multiple
regression of geographic area data (e.g., Census tracts or Zip Code areas).
Wieczorek and Coyle (1998) provide an example of this technique in the context
of targeting the neighborhoods of DWI offenders.  A generalized spatial potential
(GSP) for the DWI rate was calculated for each tract by summing the ratio of  DWI
rates (V) and distances (D) to every other tract (GSPi = V1/D1 + V2/D2 +… Vn/
Dn).  By including the GSP as an independent variable in multiple regression, spatial
autocorrelation in the dependent variable is controlled for (allowing the coefficients
and statistical tests to be interpreted).  This approach is not as statistically elegant
or complete as the methods used by Gruenewald et al. (1996), but it is a substantial
improvement that may be implemented relatively easily.

The second method with applications for prevention is the development of
continuous surface models by using kriging.  Kriging can be used to develop contour

Figure 3: DWI conviction rate continuous surface model
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maps (e.g., maps that show lines of equal value such as DWI rates) from a limited
number of points or areas (which can be given a value at the centroid) (Isaaks &
Srivastava, 1989).  Continuous surface models overcome the limitations of
geographic area such as Zip Code areas because the actual rates within the
geographic areas are unlikely to be as uniform as suggested in a map.  Kriging
creates a continuous surface model by overlaying a grid of cells over the entire areas
and calculating a weighted value for each cell based on the distance to surrounding
centroids.  The values calculated for the grid are then used to create a contour map.
An example of kriging is provided in Wieczorek and Hanson (1997).  Figure 3
shows a continuous surface model created by applying kriging to the specific tract
rates used to generate Figure 1.  A continuous surface model may provide a more
realistic version of geographic variation that can be used to target prevention and
assist in the overall planning of alcohol-related services.

SPATIAL UNDERSTANDING OF ALCOHOL AND
VIOLENCE

To better illustrate the application of spatial analysis to public health, we focus
on a specific problem that has become of increased concern to researchers and
practitioners in the field in recent years—namely, alcohol and alcohol-related
problems (specifically, violence).

Theories and Previous Research
Concern with the spatial relationship between alcohol and violence has a fairly

long history in the United States, dating back at least to the early temperance
movement of the first half of the 19th century (Levine, 1984; Mosher & Jernigan,
2000).  Criminology and public health have both understood the importance of this
relationship, although it has not necessarily been the central focus of either discipline.
However, since the late-1980s, both disciplines have undergone an important shift
in their theoretical understanding of the nature of the relationship between alcohol
and violence (Mosher & Jernigan, 2000).  The public health approach has moved
from a focus on the individual and the “disease” of alcoholism to examination of the
broad range of socioenvironmental factors that increase the risk of alcohol-related
problems (e.g., Holder, 1994; Mosher & Jernigan, 1989). For its part, the criminal
justice perspective has shifted from a primary focus on punishment of the individual
to show a renewed interest in the ways in which the physical and structural
characteristics of neighborhoods encourage and facilitate crime (e.g., Bursik, 1988;
Sampson, Raudenbush & Earls, 1997; Stark, 1987).   As part of these general
trends within criminology and public health, spatial analysis has increasingly been
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used to understand the relationship between the physical availability of alcohol and
violence.

 Table 1 summarizes small unit analysis studies of alcohol availability and crime
that have been conducted by criminologists (Studies 1 to 3) and public health
researchers (Studies 4-10).  The first group of studies focuses primarily on the role
of places—that is, bars—in the generation of crime.  The latter group focuses
primarily on the role of space—that is Census block groups or tracks containing
alcohol outlets—in the generation of crime.  The criminological studies are also

 
Study 

 
Place 

 
Unit of Analysis (n) 

 
Crimea 

 
Results  
 

 
Roncek & Pravatiner 
(1989) 

 
San Diego 

 
City block (4,598) 

 
Violent 

 
Each additional bar associated with an increment 
of .4 violent crimes per block per year 

 
Roncek & Maier 
(1991) 

 
Cleveland 

 
City block (4,396) 

 
Violent 

 
Each additional bar associated with an increment 
of .9 violent crimes per block per year 

 
Sherman, Gartin & 
Buerger (1989) 

 
Minneapolis 

 
Address (>115,000) 

 
Predatory 

 
10 of 42 locations with 10 plus predatory crimes 
over a 1-year period contained bars or liquor 
stores 

 
Scribner, MacKinnon 
& Dwyer (1995) 

 
Los Angeles 
County 

 
City (74) 

 
Violent 

 
Socio-demographics explained 70% of variance 
in violent crime; alcohol outlet density explained 
an additional 7% 

 
Scribner et al. (1999) 
 

 
New Orleans 

 
Census tract (155) 

 
Homicide 

 
Socio-demographics explained 58% of variance 
in homicide; off-sale alcohol outlet density 
explained an additional 4% 

 
Alaniz, Cartmill & 
Parker (1998) 

 
3 northern 
California cities 

 
Block group (103) 

 
Violent 
(youth) 

 
2 of 7 socio-demographic variables and alcohol 
outlet density were predictive of youth violence 

 
Gorman et al. (1998a)
  

 
New Jersey 

 
Municipality (223) 

 
Violent 

 
Socio-demographics explained 70% of variance 
in violent crime; alcohol outlet density explained 
only an additional .3% 

 
Gorman et al. (1998b) 
 

 
New Jersey 

 
Municipality (223) 

 
Domestic 
Violence 

 
Socio-demographics explained 58% of variance 
in domestic violence; alcohol outlet density 
explained no additional variance 

 
Speer et al. (1998) 

 
Newark, NJ 

 
Census tact (91) & 
block group (217) 

 
Violent 

 
Socio-demographics explained 48% (tract) & 
27% (block) of variance in violent crime; 
alcohol outlet density explained an additional 
19% & 28% respectively 

 
Gorman et al. (2001) 

 
Camden, NJ 

 
Census block group 
(98) 

 
Violent 

 
Model comprised of socio-demographics & 
alcohol outlet density explained 73% of the 
variance in violent crime; the model was 
replicated by spatial analysis 
 

a   The studies include different, but overlapping, types of violence.  Violent crime is comprised of murder, 
aggregated assault, rape and robbery.  Predatory crime refers to robbery, rape/criminal sexual conduct, and 
auto theft.  Most cases (>90%) of domestic violence involved assault or harassment, and most victims (80-
85%) were female.  Youth violent crime is comprised of homicide, robbery, rape, sexual assault, assault, 
and crime involving weapons, involving either a victim or an offender aged 15-24 years. 

Table 1: Studies of alcohol outlet density and violent crime using municipalities
or smaller units of analysis
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more overtly theoretically driven than the public health studies. The latter tend to be
more descriptive in nature, and for the most part have not offered any explicit
theoretical explanations as to why high alcohol outlet density and violence are
associated with one another.

The conceptual framework guiding the analysis conducted by Sherman et al.
(1989) and Roncek and colleagues (Roncek & Pravatiner, 1989; Roncek &
Maier, 1991) was that of routine activities theory.  According to this theory, violent
crime occurs in places that bring together a motivated offender, a suitable target and
the absence of effective guardians (Felson, 1987; Clarke & Felson, 1993).  Such
places, it is argued, have the potential to become  “hot spots” of crime, meaning that
criminal activities are likely to concentrate around them.  In the early study of
Sherman et al. (1989), bars featured prominently among the hot spots of predatory
crime identified in Minneapolis using police call data.  However, while 10 of their
42 hotspots contained bars, it should be noted that some of these hot spot locations
also contained other places (e.g., adult bookstore, park, supermarket) that might
also serve to attract potential perpetrators and victims in the context of low
guardianship.  The work of Roncek and colleagues in San Diego and Cleveland was
a more explicit test of routine activities theory.  These studies showed that the
greater the number of bars on a residential block, the higher the rate of violent crime.

There are a number of features of bars as places that can influence how and
why violence occurs within and around them (e.g., age of clientele they attract,
amount of crowding and amount of heavy drinking).  It is these types of place-
specific features of the drinking context, rather than the broader environmental
context in which the sale and consumption of alcohol occurs, that routine activities
theory leads one to focus on.  Moreover, from a spatial perspective, routine
activities theory would lead one to expect violent crime to concentrate around the
immediate confines of an alcohol outlet, rather than spilling over into surrounding
neighborhoods.

In contrast to this focus on place, ecological explanations of violence focus on
the features of the broader neighborhood context that relate to crime.   These
models tend to be multifaceted, incorporating variables drawn from one or more of
the following domains: socio-demographic composition (e.g., age, racial and
gender composition), social organization (e.g., collective efficacy) and physical
structure (e.g., types of land use, disrepair of housing stock).  For example, Stark’s
(1987) ecological model links structural characteristics of neighborhoods to crime
and deviance via their effects on elements of the community’s “moral order” such
as “loss of social control” and “cynicism.”  The structural characteristics in the model
include variables that describe both the socio-demographic composition of neigh-
borhoods (e.g., population density and residential instability) and the physical
condition of the environment (e.g., types of property use and physical dilapidation).
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For those focused more on the physical or structural characteristics of
neighborhoods, violent crime is more likely to occur in communities with obvious
evidence of decay and abandonment such as broken windows, wrecked cars,
vacant lots, trash, graffiti and certain forms of undesirable commercial establish-
ments such as sex shops (Skogan, 1990; Wilson & Kelling, 1982).  As with other
ecological variables, the intervening mechanisms linking these “day-to-day as-
pects” of the neighborhood environment to violent crime are informal social controls
and social cohesion. Communities that tolerate physical disorder send the message
that no one cares about what is happening or, if they do, that there is not the
collective will to do anything about it.  This is a more attractive environment in which
to commit crime than one in which people take note of what is occurring and act in
their collective self-interest.  Recently, it has been suggested that alcohol outlets
represent an additional form of physical disorder: “broken bottles” and bars send
essentially the same message as “broken windows,” namely that mechanisms of
informal social control have ceased to function (Bennett, DiIulio & Walters, 1996,
pp. 64-77).

To the extent that they are compatible with any of these theoretical ap-
proaches, the public health studies cited in Table 1 appear more in keeping with the
ecological models that focus on space rather than the routine activities focus on
place.  For the most part, these studies generate models that incorporate the types
of variables found in classic ecological studies—that is, age composition, race/
ethnicity, residential instability and poverty.  They do not incorporate place-level
variables such as type of clientele, bar service practices and physical location.  The
only place variable that tends to be included is outlet classification – specifically, on-
sale versus off-sale.   Moreover, when public health advocates and researchers
speculate on what links high alcohol outlet density to violent crime, they generally
do so in terms of the adverse effects that the former has on social integration and
order especially in poor urban communities (e.g., Alaniz & Wilkes, 1998; Mosher,
1995).  From this perspective, an excess of bars is to the detriment of the local
neighborhood ecology—although the exact reasons for this are not entirely clear.

This issue is further complicated by the fact that the effects of greater outlet
densities on levels of problems such as violence appear to be context specific
(Stockwell & Gruenewald, 2001).  This presents both methodological and
theoretical challenges.  For example, Gorman and Speer (1997) found that even
within one mid-sized U.S. city, there was more than one high density neighborhood
and that these high cluster neighborhoods were socio-economically and demo-
graphically quite diverse.  Given this, the problems arising from this concentration
of outlets are likely to vary (and in some instances there may in fact be few if any
problems).  Thus, general theories and principles of intervention are unlikely to be
applicable or useful across diverse settings (Stockwell & Gruenewald, 2001).
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Rather, theories, methods, data and interventions will need to attend to the
contextual features of micro-environments, with GIS and spatial analysis being an
integral part of such an approach (Gorman & Speer, 1997; Midford et al., 1998;
Stockwell & Gruenewald, 2001).

A Specific Example
An example of how violence and alcohol outlets can be studied spatially is

presented below (Lipton & Gruenewald, in press).  The spatial characteristics of
such an analysis (e.g., control of spatial autocorrelation and modeling the modifying
effects of environmental variables on socioeconomic variables) will be highlighted.

This research incorporates perspectives from both the public health and
criminological literature in order to examine people in places with regard to alcohol
outlets and violence.  Similar to the work of Morenoff et al. (2001) and Baller et
al. (2001), our analysis includes demographic and socio-economic data so as to
capture violence-related to population characteristics (i.e. high unemployment, low
rates of high school graduates, etc.).  These population characteristics are analyzed
in relation to the moderating effects of alcohol outlets on the production of violence.
Moderation can simply be thought of as interaction of outlets with people (with a
mix of characteristics).  This outlet interaction could serve to increase or decrease
violence, depending on the composition of population characteristics and outlet
presence and type.  Further, we examine spatial components of these moderating
effects.  It is hypothesized, after Gorman et al. (2001), that violence is not only
affected by populations and outlets in a target area, but may be affected by
population characteristics in adjacent areas.

Our analysis assesses whether such spatial relationships exist and controls for
spatial autocorrelations that may obscure the relationship between population
characteristics and the production of violence.  The primary goal in this example is
to test the moderating effects of outlet densities on the production of violence in a
given population with a non-zero potential for violence.  The sample comprised 766
Zip Codes from four selected areas of California:  Los Angeles, the Bay Area,
Sacramento and the northern section of the state.  The first three areas are heavily
urbanized, while the last is quite rural.   The three urban areas are heterogeneous
in regard to ethnic, age and socio-economic composition, particularly in relation to
the rural area that is more homogeneous in most population level measures.

Spatial analysis is quite data intensive and often requires the combining of many
disparate data sources.   Indeed, the “art” of spatial analysis frequently centers on
choices on how variables in different data sets are “knitted” together.  Further, the
metric and scale of variables must be carefully considered.   For example, choosing
between Zip Codes or Census blocks not only drastically changes model interpre-
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tation, but also involves a series of changes in how variables are aggregated.
Additionally, the researcher, more than usual, is placed in a position of having to
understand the data, possible sources of error, cleaning issues and variable
selection.  In this research, data are taken from three different sources: Census data,
hospital discharge data and California state data on alcohol outlets.

Alcohol outlets were located by the Zip Code of the premise address obtained
from California alcohol beverage control license records and then classified into
three types—restaurants, bars and off-premise establishments (largely liquor,
grocery and convenience stores).  This information was current as of 1991.

The characteristics of local populations were summarized using techniques
based on the work of Sampson et al. (1997).  In a geographical study of violence
and community cohesion, these authors assembled a variety of Census-based
indicators into a 10 variable scale, then identified/extracted three sub-categories
(using factor analysis) that represented concentrated disadvantage, immigrant
concentration and residential stability.  We will use census data from 1991 to
construct the same three sub-categories.

Hospital discharge data provided information on number of serious assaults
per Zip Code.  This information was current as of 1991.  Hospital discharge
“assaults” are hospital admissions labeled as “assaults” by the attending physician.
Patient home address is used for each assault case (since the purpose of this
research was to understand the dynamics between home environment and the
location of alcohol outlets).  Distinct from previous studies that have examined
violence in terms of capitated measures (e.g., assaults per person), the current
analysis used roadway miles per Zip Code as the denominator for the dependent

ρs = .183eb = -2.16

.11 2.72 -.53

Assault
Density

(x 10,000)

Population
Density

Lag
Population

Density
(x10,000)

Bar
Density

Off-Premise
Density

Restaurant
Density

.54

Disorganization Immigration Residential 
Stability

.37 -.11 5.35

Figure 4: Conceptual model and outline of Model 3
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and independent environmental variables.   This measure gives a better approxima-
tion of area density than does population per area.

Figure 4 (at this point ignore the numbers) shows the general conceptual
framework that guides the analysis.  We hypothesize that population density has a
direct effect on rates of assault, and that the effects of population density on assaults
will be modified by population characteristics and the presence of alcohol outlets.
The direct effect of population densities on assaults (b) represents the production
rate of assaults from the population.  This effect is moderated by population
characteristics and outlet densities, and may be further modified by the numbers and
characteristics of nearby populations (not shown).  It is assumed that errors in
estimation are not independent, but rather are spatially autocorrelated, rs.

In Figure 5 assaults per roadway mile are presented for each of the four
regions.  The difference in concentrations of assaults is apparent in this map, with
greater densities occurring where there are greater densities of population.  This is
not, however, universally the case.  For example, the western region of the Los
Angeles basin appears to exhibit relatively greater assaults than expected from the
population distribution observed.  Overlays of Zip Codes are represented on this
particular map.

Figure 5: Assaults per mile of roadway
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Table 2 shows the overall results of fitting the different models to these cross-
sectional data.  The table reports the degree of residual spatial autocorrelation, (rs),
its statistical test, (Rao’s likelihood ratio C2 for model [DG2] comparisons with
degrees of freedom and p-values) and a measure of overall model fit in the form of
a pseudo R2 (a measure of the variance explained by each model). For the
population density model, (Model 1), absent all other independent measures,
population per roadway was significantly related to assaults. Amount of variance
approximately explained was .570 and residual spatial autocorrelation was found
to be moderate and positive. When outlet densities were added (Model 2), the
likelihood ratio statistic and pseudo R2 indicated a significant improvement in fit to
these data concurrent with a reduction in residual spatially autocorrelated error.
When the scales representing population characteristics were added (Model 3), the
likelihood ratio statistic and pseudo R2 again indicated a significant improvement in
fit to these data, again concurrent with a reduction in residual spatially autocorrelated
error.

 Table 3 and Figure 4 (note numbers in the figure) present the results of an
analysis that includes the direct effects of population variables, alcohol outlets and
adjacent population density.  Many, but not all, of the estimated coefficients from
the model are significant.  A direct interpretation of the coefficients of the model
suggests that as population density increases, there is a reduction of approximately
2.16 assaults for every 10,000 persons in each Zip Code area.  This rate, however,
is that expected for an isolated population living in an area with no bars, restaurants

Model ρs: * Z:        p: ∆G2  **         ∆df:       p: R2p: ***  

1. Population Density .346 7.34 <.001 --- --- --- .570 

2. Outlet Density (bars, restaurants 
and off premise) 

.289 5.89 <.001 204.20 3 <.001 .667 

3. Population Characteristics (social 
disadvantage, immigrant presence 
and resident stability) and adjacent 
population density  

.183 3.51 <.001 798.76 4 <.001 .881 

 
*        A measure of spatial autocorrelation for the model 
**    -2 log likelihood difference referencing successive model comparisons 

***   pseudo R-square approximates percentage of variance explained by model 

Table 2: Overall model evaluation
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or off-premise alcohol establishments (and rather unrealistically, with values of zero
for the measures of population characteristics).  This rate is moderated, however,
by the presence of large populations in adjacent areas, the densities of restaurants,
bars  and off-premise establishments, and local population characteristics.  This rate
is greater in areas where bar densities are greater and restaurant densities are less.
This rate is further greater in areas where social disadvantage is greater, immigrant
presence less and residential stability greater.  Finally, the rate at which local
population density produces assaults is greater in areas surrounded by larger
populations.

 The intrinsic rate of production of assaults at the Zip Code level for this study
is the rate observed in a population exhibiting average levels of all exogenous
moderating variables.  In this case, the intrinsic rate for the production of assaults
is .134 per roadway mile, about that observed as the average for the 766 Zip Code
areas.  The degree to which this rate is moderated by greater or lesser densities of
bars and off-premise establishments is presented in Table 4.  In this example, the
effects of all other exogenous variables are held constant (at their averages) and the

Variable Name b: t: p:* 

Population Density -2.16 02.62 .009 

Outlet Densities    

Bars 2.72 4.36 <.001 

Off-Premise .54 1.64 .101 

Restaurants -.53 -3.97 <.001 

Population Characteristics    

Social Disadvantage .37 32.74 <.001 

Immigrant presence -.11 -15.17 <.001 

Resident Stability 5.35 2.41 .016 

Adjacent (Lag) Population Density (x 10,000) .11 2.21 .027 

Model based estimate for spatial autocorrelation: 

ρs = .183        Z = 3.51       P  < .001 

   

*two-tailed 

Table 3: Model 3: Associations of outlet densities with rates of assault
hospitalizations (x 10,000)
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range of effects related to bar densities are given for five levels of population density.
The expected range of effects is large.  In areas with greater than 1000 population
per mile of roadway (n = 15), rates of assaults may range from 3 to over 10 times
the level expected on average for the state.  At all levels of population density, the
presence of greater densities of bars may double the average rate of assaults.

The results of this analysis indicate that it is possible to construct a conceptually
well-framed analysis of assault rates that explains to a substantial degree variation
in rates of assault between places in California.  Shifting from a representation that
suggests that outlets on their own create violence to one that presents outlets as
providing contexts for violence, the usual pattern of relationships of violence to
environmental densities of alcohol outlets continue to be observed.  The current
analysis suggests, however, that alcohol outlets moderate rates at which violence
is produced within areas, and that these effects persist when controlling for spatial
effects and other covariates related to the production of violence in local popula-
tions (Tables 2 and 3).  Notably, positive relationships continues to exist between
bar and off-premise outlet densities and assaults, with no relationship to densities
found for restaurants (Table 3 and Figure 3).  Although the measures of population
characteristics are related to rates of assault, the observed relationships are not fully
consistent with those observed in studies of urban areas (see Sampson et al., 1997).
While, as expected, the measure of concentrated disadvantage is related to greater
rates of violence, the measure of immigrant concentration was inversely related to
violence rates and the measure of residential stability was directly related to rates

 Population Density (per Roadway Mile) 
 

Bar Density 
(per Roadway 
Mile) 

              0: 500: 1000: 1500 2000: 

0:  0.00 .20 .41 .61 .81 
.5:  0.00 .27 .54 .82 1.08 

1.0:  0.00 .34 .68 1.02 1.36 
1.5:  0.00 .41 .82 1.22 1.60 
2.0:  0.00 .48 .95 1.43 1.90 

 
 
 

      

 
 

 Relative Rates (Referred to Average = 0.134)  

Bar Density 
(per Roadway 
Mile) 

      

0:  0.00 1.49 3.05 4.55 6.04 
.5:  0.00 2.01 4.03 6.12 8.06 

1.0:  0.00 2.53 5.07 7.62 10.15 
1.5:  0.00 3.06 6.12 9.10 11.94 
2.0:  0.00 3.58 7.09 10.67 14.18 

 

Table 4: Estimated effects of bars on hospital discharge assaults
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of violence.  At the geographic scale of the current study (Zip Codes), greater rates
of violence are observed in stable, non-immigrant areas with greater concentrated
disadvantage.  These findings illustrate the context-specific nature of findings in this
area of research, as discussed earlier.  Bar densities, when controlling for other
environmental or socio-demographic measures, are clearly connected to an
increase in assaults.  Thus, in this example, beyond the obvious finding that denser
populations have more assaults, we are able to observe important environmental
effects that may be actionable in terms of prevention policy.

SUMMARY AND CONCLUSIONS
In this chapter we have described how spatial methods may be applied in a

specific public health area, namely alcohol and alcohol-related problems.  Al-
though, an important area of research, it is by no means unique in allowing for spatial/
ecological analysis.   There are several important factors that should be considered
when contemplating public health spatial analysis:  1) Are there specific environ-
mental features (such as the presence of bars or liquor stores) that might help explain
an outcome (such as violence)?    2)  Is there a dynamic relationship between
individual behavior and environmental (area) setting?  3) Do environmental factors,
such as alcohol outlets, modify the relationship between socio-demographic factors
and the outcome of interest (e.g., violence)?  4)  Is there data available to support
a spatial analysis?  5) Is the effect of adjacent areas likely to obscure relationships
between exposures and outcomes (spatial autocorrelation)?

When studying alcohol-related problems, spatial analysis allows for the
integration of disparate types of information into a meaningful story from both a
public health and criminological point of view.  The ability to put people in places
in more than a purely descriptive framework signals a new generation in research
that transcends traditional proscriptions against the use of ecological data.  Further,
measures of community health such as cohesion take on a more fully realized form
in a spatial analytical context.  Indeed, given that most public health and crimino-
logical data are collected at a population level, spatial analysis  allows researchers
to more clearly observe population-level effects for whatever measures are chosen.
In this regard, sometimes it is not as important to understand individual exposures
as it is to understand potential environmental ones.

In our discussion of alcohol-related problems, spatial analysis allows us to
observe hot spots of greater- or lesser-than-expected problems (such as violence
related to alcohol), socio-demographic effects without the bias introduced by
spatial autocorrelation (a smearing of effect across geographic areas) and to model
how target geographic area rates of violence may be affected by adjacent area
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alcohol outlet concentration.  Further, the mapping capability that is integral to
spatial analysis provides a powerful descriptive tool for the display of data (e.g., of
crime hot spots in combination with socio-demographic overlays).  Such analysis
can easily be applied to other issues such as drug use, HIV infection or teen
pregnancy rates.  Effectively, it is an open field; these techniques can descriptively
and analytically be used to better understand a broad range of issues in public health
and truly allow for a more rigorous notion of social epidemiology.
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    In the last 20 years, Geographic Information Systems (GISs) have had an
ever-increasing impact on the course of research and planning in many
diverse fields, including geography, geology, environmental studies, business
and criminal justice. Relatively recently, health care research, including
cancer research, has entered this domain.  The rapidly increasing use of GIS
in health-care research over the past few years is witnessed by the fact that
63% of papers in literature review for this chapter were written in the last five
years, and 35% within the last three years.
     Epidemiology, the study of disease patterns in human populations according
to person, place and time, has been the traditional means of approaching
cancer etiology.  Combining its tools with those of GIS has enabled researchers
to look at the distribution of cancer in new ways and uncover relationships not
previously seen with traditional epidemiological methods alone. Through its
data integration function, GIS has enabled the use of existing data collected
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for other purposes to be applied to cancer research.  GIS techniques can
enhance the visualization of spatial patterns of cancer, examine the contribution
of various risk factors for cancer in new ways and allow hypotheses about
cancer etiology to be tested in a spatial framework.
    The purpose of this chapter is to examine the impact of GIS on the direction
of cancer research.  In doing so, it will consider the application of GIS
techniques to research in cancer etiology and compare them to traditional
epidemiological methods. Rather than an exhaustive compilation of all the
studies in this category, selective examples will be chosen from the literature
to illustrate particular applications.

GIS AND ITS SUITABILITY TO CANCER
RESEARCH

A Geographic Information System is a set of hardware and software for
inputting, storing, managing, displaying and analyzing geographic or spatial data or
any information that can be linked to geographic location such as events, people or
environmental characteristics.  Some of the most common sources of geographic
data for a GIS are: printed maps such as those from the U.S. Geological Survey
(USGS), areal and satellite images, global positioning systems and U.S. Census
TIGER line files, which allow the determination of geographic location (e.g., and y
coordinates on a map) from street address. The more widely available sources of
non-geographic data for a GIS include worldwide census population tables,
satellite remote sensing information and geologic surveys such as those from the
USGS.  However, any information that can be associated with geographic
coordinates, or a geographic identifier such as a street address or geographic region
(city, state, county, police precinct, etc.), can be incorporated into a GIS.

The capacity of GIS to integrate data on the three epidemiological components
of person, place and time make it particularly suitable as a tool for cancer
epidemiological research.  With respect to person, it is well established that many
cancers are related to demographic factors such as race or sex.  Using GIS, the
location of cancer cases can be overlaid on maps of population data to visualize
relationships between demographic factors and patterns of cancer.

With respect to place, epidemiologists have traditionally examined geographic
variation in cancer incidence using maps.  Continuing interest in this application is
demonstrated by the existence of cancer mortality and morbidity atlases in many
countries (Atlas of Cancer Mortality in Central Europe, 1996; Atlas of Cancer
Mortality in the European Economic Community, 1992; Buser, Wolf & Robra,
1984; Cislaghi, Decarli, La Vecchia, Mezzanotte & Smans, 1989; Errezola,
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Lopez-Abente & Escolar, 1989; Gruger & Schafer, 1989; Lai, 1997; Li, 1989; Li
et al., 1981; Luppi, Camnasio, Benedetti, Covezzi & Cislaghi, 1995; Mehnert,
Smans, Muir, Mohner & Schon, 1992; Pickle, Mungiole, Jones & White, 1999;
Plesko, Obsitnikova & Kramarova, 1996; Semenciw et al., 2000; Wagner, 1989).
The ability of a GIS to handle spatial data on a much smaller scale (by pinpointing
the exact location of cancer cases) coupled with its ability to handle multiple levels
of scale (block group, census tract, city, county, state, etc.) enhance the possibility
of uncovering spatial patterns which would be missed by traditional epidemiological
methods.  In addition, the existence of known environmental risk factors for cancer,
which may vary with geographic location, can be investigated with GIS.  Data on
the levels of many of these risk factors is widely available.  Furthermore, new
environmental data from field studies can be collected and entered directly into a
GIS.  Examples of this will be discussed in a later section.

With respect to the third factor (time), information on date of diagnosis, death
or recurrence of cancer cases can be entered into a GIS so that temporal and spatio-
temporal relationships may be examined.

The visualization and analytic capabilities of GIS enable the user to examine
and model the interrelationship between factors on all three epidemiological
dimensions of cancer.

THE TRADITIONAL EPIDEMIOLOGICAL
APPROACH TO CANCER RESEARCH

To determine cancer incidence rates for different geographic regions without
GIS, cancer cases must be manually allocated to appropriate regions based on
address.  Population-based disease registries supply data on incidence or mortality
rates for larger regions such as counties or towns.  For smaller regions like census
block groups or neighborhoods, or for other non-standard regions, data must be
obtained from prospective or retrospective cohort studies, and allocation of cases
without the aid of GIS becomes a very time-consuming process.  When rates are
obtained in this way, the level of aggregation (size of the geographic region) is fixed
in advance, unless the user repeats the process again, using a different aggregation
level.  With GIS, however, the user has the flexibility of easily aggregating data at
many different levels and comparing the results.

To examine the geographic distribution of cancer, dot density case maps or
choropleth maps of cancer rates are most often used.  Dot density maps depict each
cancer case as a dot or symbol.   Choropleth maps depict the level or intensity of
cancer incidence in geographic regions by different colors or patterns.  The
geographic distribution of socioeconomic, demographic or environmental risk
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factors is usually mapped in the same way.  At best, one dot density map and one
choropleth map may be overlaid on each other to compare the distribution of cancer
cases with one risk factor, without the ability to overlay or combine several risk
factors and cancer cases on the same map.

In traditional epidemiological studies, category-specific or standardized inci-
dence rates are generally relied on to investigate the role of demographic or
socioeconomic characteristics in cancer at the aggregate level, without the use of
visualization techniques.  Regression models may be used to examine several risk
factors at a time, but these do not account for the spatial distribution of the cancer
or the risk factors.

SPECIFIC GIS FUNCTIONS APPLICABLE TO
CANCER RESEARCH

A multitude of functions specific to GIS extends these traditional epidemiologi-
cal methods of handling disease data. Many of these have been applied to the study
of cancer and will be described in the present chapter. According to Bailey and
Gattrell (1995),  GIS-specific functions can be grouped into four broad categories:
1. data integration and management
2. visualization
3. exploratory spatial analysis
4. mathematical modeling

Data Integration/Management
A key function of GIS is the integration of data from many existing sources.

This often eliminates the need to collect primary data for new studies.   An excellent
example of the diversity of possible data sources is provided by the Cape Cod
Breast Cancer and Environment Study.  To determine environmental exposure, this
study used existing records of land use, pesticide applications, hydrologic data and
real estate parcels from universities, federal, state and local agencies, town
governments, and fieldwork.  It used U.S. Census population counts and real estate
land use data to determine denominators for incidence rates. Information on breast
cancer cases came from the state cancer registry.

GIS can perform mathematical operations on this integrated data to create new
variables or estimate values for existing variables tailored to the purpose of the
study.  The Cape Cod Breast Cancer and Environment Study used GIS to calculate
intercensal population estimates from residential landuse data in order to obtain a
better estimate of the population-at-risk for breast cancer.  GIS was then used to
calculate standardized incidence ratios for different geographic areas.



How GISs are Changing the Face of Cancer Research   85

Another way in which a GIS can create new data is to calculate the degree of
environmental exposure to carcinogens. This is exemplified in a case-control study
by Lewis-Michl et al. (1996) on the relationship of toxic chemical pollutant
exposure and breast cancer on Long Island, New York.  The authors used the
location history of breast cancer cases, manufacturing facilities and vehicle density
estimates for selected highways during a twenty-year time period to compute a
weighted-average yearly exposure for each case or control, based on distance of
residence from these sources of toxic chemical pollutants.

Smoothing is a mathematical operation often used by GIS to enhance
geographic patterns in the phenomenon under study. One application is to smooth
out geographic fluctuations in rates that are caused by unstable rates in areas with
small underlying populations. A study by Osnes and Aalen (1999) applied a form
of Bayesian smoothing to survival rates for breast cancer and malignant melanoma
in Norway to look at small-scale survival differences between municipalities.

Another useful function of GIS is to calculate distances to be used in statistical
analyses based on spatial contiguity.  A study by Athas and Amir-Fazli (2000) used
a GIS to calculate patient travel distance to a major population center to examine
geographic differences in breast cancer stage at diagnosis.  In another study, the
authors used a GIS to measure travel distance to radiation treatment facilities to
examine the relationship between travel distance and receiving radiotherapy after
breast-conserving surgery (Athas, Adams-Cameron, Hunt, Amir-Fazli & Key,
2000).  Ward et al. (2000) used remote sensing data in a GIS to reconstruct
historical crop patterns and determine zones of probable pesticide exposure to
agricultural pesticides.  They then measured proximity of residence for non-
Hodgkin’s lymphoma patients to these zones to determine their degree of exposure.

Another database function of GIS is to establish “topology,” i.e., to determine
neighbors or establish neighborhoods.  A “neighbor” can be defined in numerous
ways—areas or entities related by sharing a common geographic border, trade
routes or common acquaintances.  Kennedy (1988) used a GIS to define different
orders of neighbors for counties in 11 Southeast U.S. states (bordering one, two
…five counties away) which were then used as variables in a regression model to
examine local and increasingly global trends in lung cancer mortality for males and
females.

Visualization
The second function of GIS is visualization, consisting primarily of mapping.

Using a process called geocoding, dot density maps of cancer cases by exact
location can be automatically generated. Using the geocoded data, the total number
of cases for a geographic area (e.g., state, county, town, census tract) can be
counted and divided by the underlying population of that area to determine
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prevalence or incidence rates. Choropleth maps can then be generated for different
areal configurations. Examples of different configurations of the same geographic
region are given in Figures 1-3, which show census block groups, census tracts, and
neighborhoods for Springfield, Massachusetts.

This ability to summarize or “aggregate” the data in different ways is a key
advantage of GIS.  Investigators can define geographic areas (zones) to suit the
purposes of their particular study, rather than accepting pre-defined geographic

Figure 1: Census block groups

Figure 2: Census tracts
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areas that have been established for other purposes. White and Aldrich (1999)
provide an example of purposeful aggregation in a study on pediatric cancer. The
authors defined zones based on a one-mile buffer around hazardous waste sites,
because of their interest in proximity to environmental toxins as a risk factor for
pediatric cancer.  Another example is provided by the Cape Cod Breast Cancer
and Environment Study, where use of environmentally meaningful units such as
groundwater zones and public water supply districts (areas served by private wells
vs. public water supplies) allowed the investigators to test hypotheses about the
contribution of environmental factors to cancer incidence (Brody, Rudel, Maxwell
& Swedis, 1996).  By defining zones according to different types of environmental
exposure, different hypotheses about environmental risk factors could be explored.

Varying the aggregation scheme or intervals by which the attribute to be
mapped is classified on a choropleth map can enhance or hide geographic patterns
in the data and generate hypotheses.  Larger geographic areas or classification
intervals result in larger sample sizes and more stable estimates for each area, but
can hide patterns in the data due to greater heterogeneity within each area or
classification interval.  Small areas or classification intervals result in more homo-
geneity and can enhance meaningful patterns but may result in unstable estimates.
The Cape Cod Breast Cancer Environmental Study explored these differences in
their data. The authors concluded that examining breast cancer incidence rates at
different levels (county, town, census tract and census block group) enabled them
to “explore the trade-off between larger sample size and greater statistical power”
and “the potentially greater explanatory power of smaller geographic units”  (Brody
et al., 1996).  Cromley and Cromley (1996) explored the use of a classification

Figure 3: Neighborhoods
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scheme for choropleth mapping that based the spatial configuration of geographic
areas on their attribute similarity.  They illustrated the advantages of this method in
enhancing patterns in the data compared to traditional classification methods, using
data from the German Cancer Atlas.

Smoothing techniques like those described in the previous section can be used
to eliminate some of the irregularities seen in 2D mapping, and can be particularly
useful in mapping cancer incidence rates.  Selvin, Merrill, Erdmann, White and
Ragland (1998) used kernel smoothing to create a “density equalized map” to
depict late-stage breast cancer incidence on a continuous three-dimensional
surface with no regional boundaries. This adjusts for the effect of small population
denominators in sparsely populated regions, the disproportionate visual impact of
large geographic areas on a two-dimensional choropleth map, and the distorted

visual impression given by many white areas indicating zero rates.
The ability of GIS to utilize the many types of new technology for recording and

accurately quantifying data on environmental exposure and its capability to map this
data has led to more emphasis on environmental factors in cancer research.  Point
and polygon overlay and buffering are two GIS techniques especially applicable to
visualizing the relationship between environmental exposure and cancer.  The
investigator can overlay the distribution or cases and/or controls (represented by

Figure 4: Density equalized map (Reprinted from Selvin et al., 1998)
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points) with the distribution of environmental features (represented by polygons) to
generate hypotheses about risk factors which can then be studied further at the
individual level with traditional epidemiological study designs such as cohort or case
control (Turnbull, Iwano, Burnett, Howe & Clark, 1990). Figure 5 provides an
example of overlay in which area hydrography (water) is overlaid on a map of
cancer cases. The proximity of the cases to water generates the hypothesis of
carcinogens in the water supply.   In the Cape Cod Breast Cancer and Environment
Study, investigators overlaid maps of breast cancer cases with maps of the location
of cranberry bogs and golf courses indicating areas of presumed pesticide usage,
the location of wells with elevated nitrate levels indicating poor water quality, and
buffer zones around Massachusetts Military Reservation sites which contained
toxic chemicals (Brody et al., 1997; Melly et al., 1997, 1998).  Another example
of overlay is given by the study of White and Aldrich (1999), in which the authors
mapped pediatric cancer cases and overlaid buffer zones around NPL sites.

Figure 5: Example of overlay
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Exploratory Spatial Analysis
Exploratory spatial analysis builds on the results of visualization and examines

whether visualized patterns or relationships occur by chance.  Although many types
of exploratory spatial analysis are possible with GIS, its application to cancer has
been primarily in testing for clustering of cancer cases.  Statistical evidence of
clustering in a particular geographic location (point clustering) gives the impetus to
look for the presence of possible risk factors in the area and generate hypotheses
to be tested to explain the clustering.   The ability of GIS to determine the exact
location of cancer cases makes it suitable for testing for clustering. Beyond testing
for clustering at pre-determined locations, methods such as the spatial scan statistic
(Kulldorff, 1997) and the Geographic Analysis Machine (GAM) (Openshaw,
Charleton, Wymer & Craft, 1987) and its extension (Besag & Newell, 1991) have
been developed to search an area and find locations of clusters. Hjalmars,
Kulldorff, Gustafsson & Nagarwalla (1996) used a GIS to search for evidence of
clustering of leukemia cases in Sweden, using a spatial scan statistic.  Several other
studies have applied spatial scan statistics to look for clustering of several different
types of cancer over both large and small areas (Hjalmars & Gustafsson, 1999;
Hjalmars et al., 1996; Kulldorff, Athas, Feurer, Miller & Key, 1998; Kulldorff,
Feuer, Miller & Freedman, 1997; Openshaw, Charleton, Wymer & Craft, 1987;
Timander & McLafferty, 1998).  Known cancer risk factors that vary geographi-
cally in the underlying population can be adjusted for in verifying the presence of
clustering (Kulldorff et al., 1997).

In addition to hypothesis generation, tests for clustering have been applied to
monitoring cancer incidence from cancer registry data as part of a cancer
surveillance program. Turnbull et al. (1990) outline a procedure which they call the
“cluster evaluation permutation procedure” for periodic monitoring of cancer
clusters as a substitute for reactive testing of cluster alarms after they occur.  They
applied this to cancer surveillance in upstate New York. White and Aldrich (1999)
used a GIS for monitoring leukemia incidence in upstate New York to determine
if there was clustering around hazardous waste sites.

Mathematical Modeling
The final function of GIS is mathematical modeling, which can be used to

estimate the form of relationship between various factors, or to predict or estimate
unknown values. Spatial interpolation is an example of the latter, and is used widely
in GIS in other fields.  The main application of mathematical modeling in cancer
research has been in estimating carcinogen exposure for geographic locations to test
causal hypotheses about carcinogen exposure and cancer.  An example of this is
given by Kennedy (1988), who used spatial regression to examine local and global
trends across the United States in lung cancer for males and females.
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GIS USED IN CONJUNCTION WITH
TRADITIONAL EPIDEMIOLOGICAL METHODS

Perhaps the greatest utility of GIS is its ability to incorporate epidemiological
data gathered from traditional studies to perform spatial operations, visualization
and analysis. The study by Ward et al. (2000) exemplifies this approach. They used
data from a population-based study on leukemia incidence as input for residence
location and its relationship to historical crop patterns from remote sensing.

Another way in which GIS can be combined with a traditional approach is to
identify excess rates or trends with traditional epidemiological methods (e.g.,
surveillance, cohort or case control studies) and further investigate these with GIS
methods.  In their study on breast cancer, Lewis-Michl et al. (1996) identified
proximity to industry and traffic as risk factors for breast cancer with a case control
study. They then used GIS to estimate and map exposure based on residential
history and calculated the odds ratio for past exposure vs. non-exposure. The Cape
Cod Breast Cancer and Environment Study resulted from findings by the Massa-
chusetts Cancer Registry of an excess of breast cancer on Cape Cod at the county
level which was then investigated at the local level using GIS.

Aside from providing data, traditional studies can generate hypotheses for
further study by GIS.  In the Cape Cod study, the investigators used a traditional
ecological analysis of data from the state cancer registry that did not show any
association between breast cancer incidence and elevated nitrate levels in drinking
water.  They explored this further with GIS using statistical analysis and visualization
to generate hypotheses for further study.

Findings from traditional epidemiological methods (cohort, case control) can
also be used to corroborate GIS findings or to further study and test hypotheses
generated by the GIS. In the Cape Cod study, the GIS identified an elevated
number of cases in the area of the Mass Military Reservation (MMR). The
investigators corroborated this with a previous case control study that had found a
statistically unstable association between breast cancer and gun and mortar
positions at the MMR.

LIMITATIONS OF GIS
Despite its tremendous usefulness, GIS has several limitations.  One problem

inherent in using data from a GIS is the “aggregation problem,” which refers to the
information loss which occurs when substituting aggregate data for individual-level
data.  One aspect of this is the “ecological fallacy,” the danger in making causal
inferences about individuals based on findings from aggregate or group data.
Another aspect is the modifiable areal unit problem or  “MAUP” which refers to the
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statistical bias that results from different levels of aggregation (the “scale effect”) or
different alternative groupings of data at the same level of aggregation (the “zone
effect”).  Besides the statistical and inferential problems inherent in aggregation,
there is the added problem of interpretation — the groupings used with spatial data
in a GIS have often been derived for administrative or political purposes.  Deduc-
tions that can be made from analysis of administrative groupings do not necessarily
apply to cancer etiology.  Cleek (1979) has discussed the problems introduced by
level of aggregation in interpreting complex relationships present in multivariate
models of cancer. Although there are several techniques to minimize the effects of
the aggregation problem (Wong, 1995), it must still be kept in mind when making
inferences from geographic data.

One must also be mindful of another problem with GIS when interpreting
studies using this technique. A GIS is only as good as its input data. Inaccuracies
in the original sources of geographic data, such as maps or aerial photographs or
errors introduced in the process of encoding, must be considered. Many problems
in geocoding data from street address can occur, and this problem is magnified in
rural areas (White & Aldrich, 1999).  In addition to spatial data quality, the quality
of non-spatial data obtained from many sources must be verified.

The Federal Geographic Data Committee (FGDC, 1994) has published a set
of standards for data sharing and dissemination which includes making information
available on the accuracy and quality of data to be used in a GIS.  These standards
are implemented in the form of “metadata,” the documentation that should
accompany any GIS data available.

THE PROMISE OF GIS FOR THE FUTURE IN
CANCER RESEARCH

Despite the above limitations, GIS is a powerful tool for cancer research that
has only begun to be utilized in this arena.  One area in which GIS offers the most
potential is its application to mathematical modeling.  The ability of a GIS to integrate
data on complex spatial phenomena, and readily integrate continually updated
information, make it ideal for investigating the role of environmental factors and
modeling their role in the etiology of various forms of cancer, creating changing and
more precise models as new data become available.

Another area where GIS stands to contribute most to cancer research is the
study of socio-demographic factors.  Considering the strong links shown by
previous research between many types of cancer and demographic factors,
coupled with the availability of population demographic and socioeconomic data,
the utility of using GIS for cancer incidence data seems obvious.  This is likely to
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drive much GIS-related cancer research in the future, because of the increasing
emphasis that has been placed on demographic factors in treatment, prevention and
resource allocation.  Demographic population data can be used to characterize
geographic areas with increased cancer incidence to assist in planning intervention
programs and allocating resources.

The advent of GIS, its continuing technical growth and its increasing availability
make the future of cancer research truly dynamic and exciting.
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    The Huntington Breast Cancer Action Coalition (HBCAC) recently
completed a survey of town residents regarding breast cancer.  This chapter
reviews how this community group relied upon a network of volunteers and
community goodwill to survey local breast cancer patterns and the issues
HBCAC confronted in mapping those results.  The chapter explains how
community-mapping projects differ from mapping projects directed by
scientists, private corporations and government agencies.  Community
organizations often approach maps with different perspectives and goals
than these traditional mapping agencies.  This chapter emphasizes the
significance of the community perspective for understanding and addressing
breast cancer.  HBCAC is using ESRI’s ArcView software to map breast
cancer patterns and to overlay various environmental themes, such as local
toxic sites, to better understand local breast cancer patterns.
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INTRODUCTION
Breast cancer now accounts for almost one out of every three cancer

diagnoses among women.  It is the most common form of cancer for women,
excluding non-melanoma skin cancers (American Cancer Society, 2001).  Breast
cancer is also the leading cause of death for women between the ages of 35 and 54
(Breast Cancer Action, 2001).  While many cancer rates have fallen in recent years,
breast cancer rates continue to climb (Associated Press, 2001).  Huntington Breast
Cancer Action Coalition (HBCAC) was formed in 1993 to educate the residents
of Huntington, New York about breast health.  A similar coalition on Long Island,
in neighboring West Islip, had formed in 1992.  Two years later West Islip had
developed a “‘first of its kind’ door-to-door demographic mapping survey” (West
Islip BCCLI, no date). HBCAC decided to launch a more detailed and compre-
hensive survey of Huntington women over the age of 25.  Following West Islip’s
experiences, HBCAC hoped to map its survey data.  Maps were proving to be
powerful tools for raising public awareness about the prevalence of breast cancer
on Long Island.  HBCAC’s mapping project offers important lessons for both the
public health community and organizations involved in community mapping.

Community mapping projects have become an important tool for informing
and empowering local citizens.  As Common Ground has stated, “Through the
process of creating and revising maps, communities are better equipped to
proactively address their interests and concerns” (Common Ground, 2001a).  Map
overlays allow local groups to visualize a wide range of attributes associated with
community life, including environmental, health, economic, social welfare, land use,
demographic and natural hazards data.  Using GIS overlays, community groups can
also examine the linkages among these different geographic themes.  For example,
we can use GIS to look at the way breast cancer patterns correlate with
demographic or environmental factors.  Health professionals, academics, private
corporations and others have already mapped many of these features.  If that is true,
then what makes community mapping innovative?

First, community maps raise community participation rates by engaging a
broad cross-section of the community, most of whom have little or no prior
background in mapping projects.  In Huntington, HBCAC had no internal mapping
resources.  HBCAC knew, however, that it wanted to map breast cancer, so
HBCAC sought out volunteers and paid interns who could help make that goal a
reality.  For technical skills, HBCAC sought assistance from Greenman-Pederson,
an engineering firm, and researchers at local universities.

Second, community maps are important educational tools.  Maps help
residents understand local issues by making complex datasets visual.  Although the
residents of Huntington knew breast cancer was an important issue, the maps
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helped the community to understand the widespread prevalence of this disease.
Third, community-mapping projects can improve scientific research.  HBCAC

hopes that scientists will continue to utilize HBCAC’s unique database to better
understand breast cancer issues in Huntington.  This project also gives HBCAC
credibility when it comments on scientific research.  Many of the scientists that have
worked with HBCAC have been impressed with the caliber of HBCAC’s projects
and have found HBCAC’s comments to be valuable.  HBCAC has also used its
mapping project to push for more scientific research into the environmental factors
that contribute to breast cancer on Long Island and elsewhere.  As a result of these
and other exchanges, the president of HBCAC sits on the oversight committee for
the GIS component of the National Cancer Institute’s Long Island Breast Cancer
Study Project.

Fourth, community-mapping projects are a valuable tool for developing
participants’ critical thinking skills.  They are not simply learning about their
communities by reading maps; they are also asking questions of the maps and
manipulating the maps to provide answers.  Through that process, citizens begin to
see their community in a new light.  Through its maps and other campaigns, HBCAC
wants local residents to question various environmental exposures.  Are pest-free
lawns worth the risks of potentially higher breast cancer rates?  Should residents
ignore broad-based usage of toxic substances in their community?

The mapping project also helps local citizens and activists to better understand
the complexities involved in map analysis.  Residents in high breast cancer areas are
continually frustrated by the inconclusive nature of many government studies that try
to statistically identify cancer clusters.  By gaining a better understanding of mapping
technologies and statistical techniques, residents understand why scientific research
can often be inconclusive.  That knowledge also helps to sharpen advocates’ public
policy campaigns.

Fifth, community-mapping projects are distinctive because local citizens, often
working through non-profit organizations, control the mapping process.  They
control what is to be mapped, how maps are to be distributed and how they are
going to be publicized.  This shift can lead to mapping innovations, like breast cancer
maps.  Citizens often bring new perspectives to mapping, highlighting previously
ignored issues and helping to change local public agendas.  Maps can strongly
influence community perceptions.  In Huntington, HBCAC knew they wanted to
use maps to explore the relationship between environmental contamination and
breast cancer.  They wanted to use their maps to heighten public awareness of the
usage of toxic substances in Huntington and to explore whether those substances
were affecting local breast cancer rates.  Local control of the mapping process is
particularly important because many community-mapping projects focus on politi-
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cally sensitive issues.  For that and other reasons, relying upon government agencies
for these maps can often lead to frustration.  Despite that tension, much of the
information that community mapping projects draw upon comes from governmental
data sources and often requires the cooperation of government officials.

Breast cancer maps provide a good illustration of these tensions.  Debates
about privacy and data confidentiality have been a frequent source of conflict
between government officials and grassroots breast cancer organizations.  From the
perspective of government, releasing detailed data about breast cancer (or any
cancers) can be an invasion of privacy.  People’s lives can be seriously disrupted
by the public release of data describing their health histories.  There’s a fear that local
citizens will be stigmatized or that individuals may lose their jobs.  From the
perspective of community health advocates, it is essential that the public understand
the extent of disease within their community.  Detailed community maps provide a
powerful visual tool for exposing the ubiquity of breast cancer on Long Island.

Sixth, community-mapping projects improve public policy.  Community
mapping efforts often begin in a fairly naive way, with local citizens believing that by

creating maps and mixing
new and old sources of data
in compelling ways, they can
open a space in public dis-
course for considering new
alternatives.  What com-
munity groups frequently
learn is that the pace of
change in government is
often much slower than they
anticipated or that key ele-
ments of their government
are hostile to their plans.

Today, a wide chasm
has opened in the environ-
mental health field.  On the
one side are academics and
government officials who
feel that we must focus on
research.  These individu-
als focus primarily on ge-
netic research and, to a
lesser extent, environmen-
tal research in search of

BENEFITS OF COMMUNITY 
MAPPING 

 
1. Maps engage the community. 
 
2. Maps are educational. 
 
3. Community involvement can 

aid scientific research. 
 

4. Participants strengthen their 
critical thinking skills.  

 
5. Community members control 

the process. 
 

6. Community maps help sharpen 
public policy goals. 
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better answers to the causes of and medical solutions to breast cancer.  On the other
side are environmental health advocates and some environmental scientists.  They
believe various cancers are a direct product of industrial-era chemicals.  For
example, much attention is now focusing upon groups of chemicals that affect the
body’s hormonal system.  In Our Stolen Future, Dr. Theo Colburn and her
colleagues (1997) argue that synthetic chemicals mimic natural hormones, disrupt
the body’s endocrine system and trigger hormone-related diseases, like breast
cancer.

Therefore in the area of breast cancer, maps have become deeply politicized.
At one level, community-based breast cancer maps are about raising public
education and awareness.  But, at another level, these maps are about changing our
understanding of environmental health and changing public policies that affect our
health.  Rachel Carson (1962) begins her path-breaking book, Silent Spring, by
noting how intimately we live with modern chemicals—how we eat, drink and
breathe pesticides into our bodies without pausing to consider the devastation that
these chemicals cause.  Dr. Sandra Steingrabber (1997) also emphasized these
issues of intimacy.  For example, she discussed how mothers pass along PCBs and
other chemicals to their newborn children through their breast milk.  Both authors
emphasized that this knowledge should lead to specific improvements in public
policies.

While community-based maps do not create a two-dimensional portrait of
these intimate health relationships, they do paint a powerful picture of communities
suffering silently, block after block, through devastating illness.  Breast cancer maps
are a powerful tool for breaking that silence, forcing the public to confront its
secrets, and developing new public policies that reduce breast cancer risks and
improve the health-care system’s effectiveness.

These concerns have prompted HBCAC to promote a new public policy
initiative, the precautionary principle: “When an activity raises threats of harm to
human health or the environment, precautionary measures should be taken even if
some cause-and-effect relationships are not fully established scientifically.  In this
context the proponent of an activity should bear the burden of proof” (Wingspread,
1998). A diverse array of health and environmental organizations has already
adopted this standard.

SURVEYING WOMEN IN HUNTINGTON
In the early 1990’s, the Town of Huntington (see Figure 1) had a population

of 200,000 (90% white).  HBCAC decided to survey the entire town with the goal
of mapping and studying breast cancer and reaching a 50% response rate.  The
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survey was written by Roger Grimson, PhD, a biostatistician at the Department of
Preventive Medicine at the University Medical Center at Stony Brook; physicians
at Huntington Hospital, and local breast health activists.  The survey was mailed out
to over 68,000 households in September 1993, all known households in the town.
The survey was sponsored by Huntington Hospital and supported by Huntington
town officials and community volunteers.  The survey was written in both English
and Spanish, and publicized in community newspapers, radio and television
stations; local Parent Teacher Associations (PTAs); and through other civic and
religious groups.  In response, over 15,500 surveys were filled out and returned
(Galgano, 2001).

In June 1994, the Junior League of Long Island and Suffolk County Health
Partnership sponsored a second mailing, targeting non-respondent households.
HBCAC collected another 9,000 surveys.  HBCAC volunteers entered the
surveys into a computer.  Each survey was reviewed, assigned a record number and
supplied with a nine-digit ZIP Code if not provided.  (Volunteers manually retrieved
the nine-digit ZIP Code from U.S. Postal ZIP Code books.)  The surveys were
batched in groups of 25.  It took 1 to 1.5 hours to enter a batch into the computer
database.  The initial data entry program was written in 1993 by volunteers in DOS
and later revised for Windows.

Figure 1: Huntington locator map
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At a town hall meeting on the evening of March 25, 1995, HBCAC presented
preliminary statistics for the 18,955 Breast Health Surveys they had tabulated.
Greenman-Pedersen Inc. geocoded and mapped the survey data.  Of the respon-
dents, 5,421 indicated that someone in their family had breast cancer (29%); 939
respondents indicated they themselves had breast cancer at some time (5%).

In July 1996, HBCAC completed a third mailing, bringing in another 5,000
surveys.  Also, HBCAC utilized Huntington Hospital, town hall, local libraries,
doctor offices and beauty parlors to distribute and collect additional surveys.
Lastly, volunteers visited specific addresses to urge non-responders to fill out the
survey in a “Neighbor-to-Neighbor Campaign.” As a result, another 1,300 surveys
were collected, bringing the gross total number of surveys up to 30,800.

Errors did occur in the data entry process.  Upgrading the data from DOS to
Windows proved particularly problematic.  The date-of-birth field was lost on
thousands of surveys and were re-entered.  Again, volunteers spent countless hours
making the necessary corrections.  The database was also checked for duplicates,
which were removed.  A more careful verification of the survey was initiated by
epidemiologist Erin O’Leary, PhD, and initially consisted of a random selection of
10% of the records, which were compared to the original hard copy of the surveys.
When these analyses were complete, 23,777 surveys were deemed acceptable for
analysis.  The difference between the gross and final count was primarily due to
duplicate surveys.

In the fall of 2000, after seven years of work, the survey was completed.
HBCAC asked Dr. Erin O’Leary (2001) to analyze the completed survey.  Below
are some highlights from her findings:

Dr. O’Leary estimated that 37% of the town’s female population, over age 25,
responded to the survey.  Among respondents, 5.1% indicated that they were
previously diagnosed with breast cancer.  Those respondents were, on average, 10

Breast Cancer Survey Findings 
Total number of respondents. 23,777 women 
Total female population of Huntington, over age 25. 63,665 women 
Survey response rate. 37% 
Respondents diagnosed with breast cancer, over age 25. 1,218 women 
Breast cancer prevalence rate. 5.1% 
Average age of respondents. 51 years 
Average age of respondents ever diagnosed with breast cancer. 61 years 
Respondents’ average number of years living at current residence. 17 years 
Average years in residence of women over 25 with breast cancer. 23 years 
Average age at breast cancer diagnosis. 53 years 
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years older, and had lived at their current residence six years longer than the total
survey population.

MAPPING BREAST CANCER IN HUNTINGTON
Breast cancer mapping in Huntington is still in an early phase of development.

The mapping process is envisioned as a three-stage process.  The first stage,
geocoding, is now complete.  The second stage of the analysis is to examine the data
for possible cancer clusters.  The third phase of the research is to correlate breast
cancer patterns with known environmental hazards in the region.  HBCAC has been
collecting environmental data sets and done some very preliminary analysis with
those datasets.

Stage One: Geocoding and Mapping Breast Cancer in
Huntington

In the spring of 1999, HBCAC, with assistance from Long Island University,
was awarded a Conservation Technology Support Grant (CTSP), which provided
the organization with computer hardware and software resources to do its own
breast cancer mapping.  With the assistance of Greenman-Pedersen, Inc., the final
surveys were geocoded with data provided by Geographic Data Technology Inc.
(GDT) and ESRI’s ArcView software.  The ZIP+4 geocoded centroids, provided
by GDT, enabled HBCAC to successfully geocode over 99% of the survey.
Greenman Pedersen, Inc. printed these maps on a large format printer.  In January
2001, HBCAC presented their preliminary maps from the completed survey.  The
maps are now on display in local libraries.

Huntington breast cancer cases were mapped in two ways.  First, HBCAC
overlaid respondents who ever had breast cancer (see Figure 2) onto respondents
who never had breast cancer.  Of the 23,777 respondents, 5% had breast cancer
in their life.  Second, we mapped the percent of respondents who ever had breast
cancer at each ZIP+4 (see Figure 3).  Many of these percentages were 100%,
reflecting the fact that the only respondent from that ZIP+4 had been diagnosed with
breast cancer.  Those ZIP+4 with no breast cancer cases (0%) were not mapped,
to focus upon positive cases.

Response rates (Number of respondents/female population over 25) and
prevalence rates (Have breast cancer/total respondents) were mapped by ZIP
Code to provide some basic statistics about the distribution of cases (see Figures
4 and 5).  Response rates were high in Huntington (11,743) at 51% and Centerport
(11,721) at 52%, exceeding the 50% response goal originally set by HBCAC.
These were the only two ZIP Codes to meet the original goal.  Response rates were
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Figure 2: Survey results per ZIP+4

Figure 3: Percent breast cancer cases per ZIP+4
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Figure 4: Survey response rates by ZIP Code
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surprisingly low in Commack (11,725) at 17%, Cold Spring Harbor (11,724) at
22% and Greenlawn (11,740) at 27%.  Prevalence rates were highest in Cold
Spring Harbor at 7%, but this may simply be a product of the low response rate in
that community.

These basic maps are powerful tools for increasing breast cancer awareness.
The maps were first showcased at a community forum in January 2001.  The maps
will continue to be displayed at local libraries throughout the year.  So far, the
public’s response to these exhibits has been very strong.  Local residents are able
to carefully examine the maps and reflect upon the information they convey.  Many
residents find the maps to be shocking; hundreds of color dots on the maps starkly
illustrate the prevalence of this disease within their community.  This illustrates the
educational power that community maps can have.  The community has been very
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appreciative of the ZIP+4 level of detail in these maps, a level of detail that
government agencies cannot provide.

In response to the grassroots interest in cancer maps, New York State’s
Department of Health released county-level breast cancer maps for the state in
1999.  Local breast cancer organizations complained that those maps were hardly
sufficient for their needs.  The next year, the Department’s New York State Cancer
Surveillance Improvement Initiative (2000) released ZIP Code level maps.  Many
grassroots organizations, however, were disappointed with these maps as well.
These organizations argued that both the county and ZIP Code maps lacked
sufficient detail to identify specific cancer clusters.

State officials countered that they could not provide more detailed mapping
information without compromising patients’ confidentiality.  For example, the
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Department of Health has stated, “In order to protect patient confidentiality, as is
required by state law, some ZIP Codes (those with very few total cancer cases)
were combined with a neighboring ZIP Code before being mapped” (New York
State Department of Health, 2000).  Some local activists were concerned about the
use of these averaging techniques.  The more data that is averaged together, the less
the public can learn about small-area clusters.  Also, the choropleth shading
techniques used by New York State dulls the sense of crisis felt by grassroots health
advocates.  On the state’s maps there are only a few areas where rates are
significantly higher than “expected,” and most communities on Long Island are not
significantly above the “expected” rates.  These expected rates are calculated
against state wide averages.  Yet, breast cancer rates in New York State, like other
northeast states, are significantly higher than national averages.  In looking for
elevated rates, should Long Island be compared with state rates or national rates?
A number of breast cancer activists wanted the state to compare local rates to both
rates.

The dot density maps used by HBCAC present a very different picture of
breast health in Huntington.  Breast cancer rates in most of Huntington’s commu-
nities are within 15% of the expected rates, according to New York State’s maps
(New York State Cancer Surveillance Improvement Initiative, 2000).  But
HBCAC’s dot density maps provide a vivid picture that a serious problem exists,
a problem that did not exist 40 or 50 years ago.  Again, community maps allow us
to look at problems from perspectives that government agencies (and private
corporations) are reluctant or unable to share.

Stage Two: Cancer Cluster Analysis
In recent years much attention and controversy has emerged around the issue

of cancer clusters. Scientific experts are reluctant to label neighborhoods with high
incidence of disease a “cluster” when they don’t understand the causes of these high
rates.  In addition to lacking a well-established disease agent, many perceived
clusters do not meet standard statistical thresholds for being significantly different
from background cancer rates.  Cancers are never going to be uniformly distributed
across a geographic region.  Some clustering is inevitable and can be explained
away as due purely to chance.  Like marbles dropped from a bag, some cancers
“land” closer to other cases.  Local residents generally do not like these explanations
because many communities live near potentially hazardous land uses.  Many
residents feel that such explanations are too dismissive of their health fears.

HBCAC, therefore, found itself in a unique position.  HBCAC wanted to work
with the same tools that scientists were using to investigate their datasets.  By
undertaking their own analyses, HBCAC did not have to depend upon government
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agencies for this research and did not need to worry that results were not being
honestly provided back to the community.  But, HBCAC also learned it had a
responsibility to understand and to utilize scientific methodologies if they wanted
others to take their results seriously.

New York State’s Department of Health, in addition to comparing breast
cancer rates in individual ZIP Codes to statewide averages, tested these rates for
statistical significance using the SaTScan software.  Using probability statistics,
SaTScan creates “an infinite number of distinct geographical circles, with different
sets of neighboring census areas within them” (Kulldorf, 1998) to identify circular
clusters with the highest statistical significance in the dataset.  In 2002, HBCAC
hopes to complete its own analysis of local breast cancer clusters using this same
software.  In addition, HBCAC is examining Dr. Gerard Rushton’s (1997) spatial
filtering software.

Of the 1,250 cases of breast cancer in HBCAC’s database (this total includes
some cases outside of Huntington), about half of the women had lived in their current
homes for 15 or more years prior to their breast cancer diagnosis.  If the residency
is reduced to 10 years, then the total number of cases rises by 153 to 784 cases.
Either way, a significant number of the known breast cancer cases in the dataset
cannot be used for cluster analysis because of the need to account for a minimum
of 10 years of residency to relate environmental contaminants to spatial patterns of
breast cancer.  Even this is inadequate, because household exposure may not be
the most relevant pathway for understanding these spatial distributions.  Neverthe-
less, this is the best that we can do with the existing survey data.  The cluster research
will also account for the fact that cancer cases in the town were diagnosed at
different time periods.  Therefore, it may be useful to control for the timing of
diagnosis in looking for cancer clusters in the community.

Stage Three: Mapping Environmental Contaminants
HBCAC, like many other breast health coalitions, has focused a significant

amount of resources on trying to reduce the public’s exposure to hazardous
chemicals.  For example, HBCAC distributes “I am fed naturally” signs for local
lawns to encourage homeowners not to use potentially harmful pesticides on their
lawns.  One of the major goals of the mapping project is to raise public awareness
about the widespread usage of chemicals in the Huntington community and reduce
the public’s exposure to harmful chemicals.

A major part of HBCAC’s mapping project is to identify toxic sites in
Huntington and to map those sites in relation to the breast cancer survey data.
HBCAC has been collecting data on a wide range of land uses and toxic emitters
for its GIS project.  HBCAC now has GIS coverages for: dry cleaning establish-
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ments, gas stations, landfills and dumps, golf courses, land use in 1980, land use in
1994, current and archived U.S. E.P.A. Superfund sites and toxic release inventory
sites.  HBCAC would also like to map the region’s water supply distribution system
and continues to work with local water supply providers to gain that information.

As part of HBCAC’s public presentation last January, we examined sites listed
on EPA’s online Superfund list, which includes both current Superfund sites and
sites that were removed from further consideration for Superfund status.  (Most of
the Huntington sites on this list are not superfund sites.)  We found that women who
lived closer to these sites did not have a higher risk of getting breast cancer.

While HBCAC plans to analyze these environmental datasets in more detail,
some health organizations are beginning to recognize that industrial sources of
contamination, while significant, may not explain the widespread distribution of
cancers, like breast cancer.  Lifestyle factors may play a larger role in breast cancer
than industrial contamination.  These lifestyle factors probably stem from multiple
sources and could include low levels of contaminants in drinking and bathing water,
dairy and meat products, pesticides, health care products, medical radiation,
plastics, fossil fuel combustion, etc.  While the research is still unclear on exactly
which of these products is causing breast cancer, researchers have begun focusing
on man-made chemicals that mimic bodily hormones like estrogen to explain rising
breast cancer rates.  Many of the above substances have these properties.

While HBCAC does not have survey data to understand these subtle lifestyle
effects for individuals, we can begin to look at the more concentrated industrial
pollution sites.

CONCLUSIONS
When I first began working with HBCAC on its survey, it wasn’t clear to me

where this project would go.  I was skeptical that a grassroots-mapping project
could succeed where so many scientists had failed.  How could HBCAC help to
define the causes of breast cancer or identify new cancer clusters? But HBCAC’s
mapping project is much broader in focus than those goals.

HBCAC’s maps were recently center stage at a Congressional hearing held
in Garden City, Long Island.  Senators Clinton (NY), Reid (NV) and Chafee (RI),
and the Long Island legislative delegation asked a selected panel of scientists and
health advocates to discuss “Environmental Contamination and Chronic Diseases”
(107th Congress, 2001).  HBCAC’s President, Karen Miller, was one of those
panelists, and three of HBCAC’s maps were placed on the stage alongside the
elected officials.  The maps were filmed by a variety of news outlets covering the
event.  At that event, Karen Miller asked the elected officials to look at the maps
and to understand that each survey respondent, whether they had breast cancer or
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not, represented a woman who wants better answers and is confident that detailed
maps, like HBCAC’s, can be developed without compromising her privacy.

The mapping project has already influenced the government’s view on health
maps.  Pressure on New York State from organizations like HBCAC played a role
in pushing the state to develop cancer maps for the state and contributed to the
state’s decision to release ZIP Code-level maps. But New York State must do
more.  While the government should continue to protect patients’ privacy, it’s also
true that GIS tools can be used to produce maps at a finer spatial scale than ZIP
Codes without compromising privacy rights.  HBCAC’s maps are a powerful
reminder of how much momentum exists at the grassroots level for stronger
governmental responses to this issue.

While we are just beginning the process of understanding the analytical value
of mapping breast cancer in Huntington, the maps have had a powerful effect on
local awareness of breast cancer.  Hopefully more women and government officials
will pay closer attention to breast health issues.  By mapping cancer and local
sources of contamination, hopefully these maps can also play a role in reducing the
toxic burden on our bodies.

HBCAC’s mapping project and other initiatives are pushing the organization
to expand in new directions.  HBCAC recently launched a new campaign
“Prevention is the Cure,” along with a new web page (http://
www.preventionisthecure.org) to promote the precautionary principle.  HBCAC
is packaging its breast cancer maps and other local campaigns into an innovative
toolkit to teach local residents and businesses how they can begin to practice the
precautionary principle in their own lives.

In conclusion, community-mapping efforts offer communities a powerful tool
for thinking about localities.  Maps do indeed influence public perceptions about
place, and GIS tools give community organizations greater control over influencing
those perceptions of place.  Taking control of breast cancer mapping in Huntington
has freed the community to ask questions about their community that government
officials frequently ignored.  The process has also empowered HBCAC to demand
more of government.  To reluctant officials, HBCAC members have frequently said,
“If we can create these maps, then so can you.” Specific policy changes have also
been made.  For example, New York State passed a neighbor notification law for
pesticide spraying, which breast cancer groups actively supported.  Many more
changes, however, still need to be made.  The Common Ground Community
Mapping Project believes that “community mapping is a way for local citizens to
reinhabit their home place” (Common Ground, 2001b).  This is precisely the
message that HBCAC is trying to create through its maps.  For HBCAC, GIS is
an important tool for making communities healthier places to inhabit.
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    This chapter examines spatio-temporal changes in breast cancer clustering
in the Northeastern United States to assess the statistical significance of
clusters using GIS-based kernel methods.  It first describes higher-than-
average breast cancer mortality rates in the Northeast and introduces
statistical methods for detecting geographic clusters of disease. A GIS-based
kernel method based upon the theory of Gaussian random fields is applied to
the breast cancer mortality data taken from the National Center for Health
Statistics’ Compressed Mortality File. The method makes use of a map of
rates, smoothed using a Gaussian kernel.  The maximum smoothed value is
compared with the statistic’s critical value to identify significant clusters.
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    Results from the analyses show changes in spatio-temporal clustering
patterns in the Northeast during the period 1968-1998. The results reveal not
only the existence of statistically significant breast cancer clusters, but also
the changing patterns of those clusters over time. Since environmental risk
factors may play an important role in explaining the unknown etiology of
breast cancer, analyses of spatio-temporal changes of breast cancer clustering
may provide important clues to the study of breast cancer and environment
relationships.

INTRODUCTION
Breast cancer is the most commonly occurring cancer among women in the

United States.  It is estimated that one out of every nine women in the United States
will develop breast cancer.  To explain the causes of breast cancer, epidemiologic
investigations have used known risk factors, including demographic and socioeco-
nomic factors, family history factors, and hormonal and reproductive factors, but
many other factors remain unknown.  Being age 45 or higher for white women, high
socioeconomic status, having never married, urban residence, and residence in the
Northeastern United States are all considered to be important risk factors (Kelsey
and Horn-Ross, 1993; Madigan et al., 1995).

Previous studies of the geographical patterns of breast cancer have found that
mortality from breast cancer is highest in the Northeast (Blot et al., 1977; Sturgeon
et al., 1995; Kulldorff et al., 1997).  Blot et al. (1977) concluded that the location
of residence plays an important role in explaining geographic variations in breast
cancer risks, especially for post-menopausal women.  Sturgeon et al. (1995)
evaluated geographic differences in breast cancer mortality rates to explain excess
mortality in the Northeast and Midwest relative to the South.  The higher rates in
the Northeast are in part explained by the regional distribution of risk factors and
related lifestyle differences, including late age at first birth, late menopause, early
menarche and mammography history.  A recent study using a spatial scan statistic
found the New York City-Philadelphia Metropolitan area as the most statistically
significant cluster (Kulldorff et al., 1997).  The study also identified several sub-
clusters within the Northeast, including Buffalo, the District of Columbia, Boston
and eastern Maine, all with higher-than-average mortality rates.

The purpose of this chapter is to investigate spatio-temporal changes in breast
cancer clustering in the Northeastern United States, and to assess statistical
significance using GIS-based kernel methods.  A newly developed GIS-based
kernel method based upon the theory of Gaussian random fields (Rogerson, 2001a)
is applied to breast cancer mortality data.  The method makes use of a map of rates,
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smoothed using a Gaussian kernel.  The maximum smoothed value is then compared
with the statistic’s critical value.

In the next section, we begin by reviewing statistical methods for detecting
geographic clusters of disease and by discussing uses of kernel-based smoothing
in cluster detection.  The third section briefly describes the data sets on breast
cancer mortality, the study area and the major steps in the analysis.  The fourth
section introduces the statistical method used in the study, and includes a discussion
of the local statistic that is based on the kernel method.  The section also provides
an appropriate critical value for the maximum local statistic. The fifth section
presents results from the analyses of breast cancer mortality, changes in spatio-
temporal clustering patterns in the Northeast and the retrospective detection of
changes. The final section provides a summary and discussion.

METHODS TO DETECT GEOGRAPHIC
CLUSTERS OF DISEASE

Geographers and epidemiologists have long worked to identify spatial patterns
and geographic variation in disease data.  Many studies concentrate on disease
clustering, cluster identification, association with point sources of pollution and
space-time disease incidence (see, e.g., Lawson et al., 1999; Elliott et al., 2000).
A common question of these studies is: “Is there a disease cluster in an area, and
is it significant?”   If there is a significant cluster, the next question is: “What are the
causes of that particular disease cluster?”  Once areas with raised incidence of a
particular disease are identified, one may want to pursue the causes of that particular
disease cluster by epidemiologic investigations.

Classification of the statistical methods to detect clusters depends upon several
factors, including the purpose of the investigation and the methods used (explor-
atory or confirmatory), the dimension (space or time) and data types (individual or
aggregate).  Tests are commonly classified as global or local tests, corresponding
to tests that focus on the entire area and tests that are confined to particular
locations, respectively.

Methods for identifying geographic locations of clusters are often based on
scanning methods; such approaches scan a map with windows of varying size, and
identify areas of elevated incidence.  One of the earliest scanning methods was
Openshaw et al. ’s (1987) Geographical Analysis Machine (GAM), which is
composed of a hypothesis generation and significance testing component, and a
GIS component to handle data and display outputs.  Besag and Newell (1991)
propose a variation on the GAM that searches for clusters only around disease
cases.  Despite its simplicity, GAM has been criticized for several reasons, even as
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an exploratory tool (Besag and Newell, 1991).  The primary questions concern
statistical significance, and modified methods based on the original GAM approach
have been suggested (Fotheringham and Zhan, 1996).

Similar methods include the spatial scan statistic (Kulldorff and Nagarwalla,
1995) and the spatial filtering method (Rushton and Lolonis, 1996).  The spatial
scan statistic considers circles of different sizes at different locations, and considers
the likelihood of observing the actual number of cases inside of the circle, under the
null hypothesis of no clustering.  The likelihood associated with the maximally likely
cluster is compared with a critical value established from the 1- α percentage point
of a ranked list of maximum likelihoods, each associated with a simulation of the null
hypothesis.  The spatial scan statistic also adjusts for inhomogeneous population
density and any confounding variables.  The spatial filtering method proposed by
Rushton and Lolonis (1996) uses a regular lattice grid and spatial filter areas to
assess spatial variation in birth defect rates.  They use a grid with cells 0.5 mile apart
and a 0.4 mile search radius.  The method produces maps showing contours of
equal statistical significance associated with the test of the null hypothesis of no
spatial pattern.  All of these methods use circles and search for clusters across all
areas of the study region, so that pre-selection bias can be removed.

Two commonly used methods for mapping spatial variations in disease are
maps of relative risk and maps of statistical significance.  The former approach is
a popular choice and has the advantage of easy interpretation. Maps of the
standardized mortality ratio (SMR) fall in this class.  However, such maps tend to
display the most extreme values in areas of small population.  The latter approach,
including maps of Poisson probabilities, has the problem of potentially extreme
significant levels in areas of large population, due to sample size effects.  Alterna-
tively, empirical Bayes estimates or smoothing methods have been suggested as a
compromise, and are often used as an alternative approach (Clayton and Kaldor,
1987; Bailey and Gatrell, 1995).  Smoothing methods were designed to filter out
variability in a data set based on functions of the data in surrounding areas, and
kernel-based smoothing methods have received much attention in recent years by
investigators.

The GIS-based statistical method used here not only detects the location and
size of geographic clusters, but also assesses the statistical significance of clustering.
The local statistics are derived based upon smoothed, local kernel estimates which
are weighted sums of the observed disease rates in surrounding areas.  The
maximum local statistic is compared to a fixed critical value. In addition, the
approach does not require an additional adjustment for multiple testing, and does
not require repetitive simulations or extensive computations since the critical value
is derived analytically.
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DATA AND STUDY AREA
The study area is composed of 217 counties in nine states in the Northeastern

United States.  A map showing the locations of the 217 counties is given in Figure
1.

Breast cancer mortality data is taken from the National Center for Health
Statistics’ Compressed Mortality File (CMF).  Data on the CMF are based on the
National Center for Health Statistics’ mortality files that provide statistics on all
deaths recorded in the United States.  These data are available at the county level
for individual years for the period 1968-98, grouped by age, sex, race and all causes
of mortality.  The data on deaths from breast cancer (International Classification of
Diseases-9, code 174) were extracted for the 217 counties in the Northeastern
U.S. and aggregated into five-year time periods.

We calculated the expected number of breast cancer deaths using the
population estimates provided in the CMF.  The population estimates are based on
Bureau of the Census estimates of county resident population (National Center for
Health Statistics, 2000).  The expected number of breast cancer deaths in region
i, λi , is calculated using the indirect standardization method, by multiplying national
age-specific death rates (dj) by the county population in each age group.

Figure 1: Counties of the Northeastern U.S. as a Study Region Showing the
Locations of Major Cities and County Boundaries
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∑=
j

jiji dpλ

where pij denotes the population at risk in age group j in region i.
The observed and expected numbers of breast cancer deaths for each of the

217 counties in the Northeast were used as input to compute local statistics as
described in the next section.

STATISTICAL METHOD

Transformation of the Data
The Freeman-Tukey (1950) transformation, 1++= xxt , is used to

achieve a stable variance, where x is the number of breast cancer cases observed
in a county.  Though Freeman and Tukey do not give the mean, variance and
skewness of the transformed variable, they can be approximated as follows;

14)43(7)(8 skewness

;1][;14][

++−+≈

≈+≈

λλλλ

λ tVtE
(1)

where λ  = E[x] is the expected number of cases.
The new variable may then be transformed to a standard normal distribution

using,

14114 −−++=+−= λλ xxty (2)

There are two objectives in transforming the data—one is to achieve a more
stable variance, so that regions with small numbers of cases are not inherently more

λ Untransformed Freeman-Tukey Eq. (1) Simulation 

0.7   .41 
1 1 -.65 .07 
2 .71 -.47 -.38 
3 .58 -.39 -.45 
4 .50 -.34 -.40 
6 .41 -.28 -.25 
10 .32 -.22 -.17 
20 .22 .15 -.12 
 

Table 1: Comparison of skewness associated with transformations
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variable than those with large numbers of cases.  The other objective is to transform
the data to normality to approximate a Gaussian random field.

As the expected number of cases increases from very small values (much
less than 1), the Freeman-Tukey transformation stabilizes the variance much more
quickly than alternatives, such as Anscombe’s (1948) square-root transformation,

8/3+= xt .   It is also the case that the Freeman-Tukey transformation leads to
a variable that is approximately normally distributed. Table 1 shows that the
skewness of the transformed variable is markedly less than the original, untransformed
Poisson variable.  Simulations were used to evaluate skewness; 10,000 repetitions
of Poisson distributed variables with parameter λ  were transformed and assessed
for skewness. While the original, untransformed data displays positive skewness,
the transformed data generally has a slight negative skewness.  The table also
reveals that, despite its accuracy for higher values of λ , the expression for skewness
in (1) is not a reliable guide to the skewness that will be observed for low values of
λ  (less than about 2).  Finally, although the Freeman-Tukey transformation has a
desirable empirical skewness of close to zero near λ =1, skewness in this range of
λ is very sensitive to the value of λ .

Calculation of Local Statistics and Critical Value
A smoothed local statistic zi for region i is computed based on the weights wij

associated with a Gaussian kernel (Rogerson, 2001a);

∑=
j

jiji ywz

2 2/ 21( ) ijd
ijw e σπσ −−=

where yj is the normally distributed, standardized variable of interest in region j
previously defined, dij is the distance between the centroids of regions i and j, andσ
is the bandwidth (standard deviation) of the Gaussian kernel.  It is convenient to
scale the weights so that σ  may now be interpreted as a multiple of the average
length of a spatial unit;

}
)/(2

exp{1
2

2

nA
d

w ij
ij σσπ

−
=

where A is the total area of the study region and n is the number of counties.  Hence
a choice of σ =1 would imply a kernel width equal to the average distance to an
adjacent region.
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To help correct for edge effects and irregularly shaped regions, the weights
are redefined by dividing the original weights by the square root of the sum of
squared original weights.

∑
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where the redefined weights are,

∑
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This ensures that the local statistic has mean zero and variance one (see
Rogerson, 2001a).  Finally, the maximum local statistic, M = max iz~  is compared
with the following critical value:

))81.1(4ln(
2

*

n
M σαπ +−= (4)

The method offers flexibility to control the levels of smoothing through the
choice of σ .  When cluster size is unknown, different values of σ  may be used in
an exploratory manner.  To illustrate, we produced a map of local statistics, iz~ , and
then used interpolation to produce a continuous surface.  After transforming the
observed and expected numbers of breast cancer cases to the standardized scores
using Equation (2), the local statistics were found using Equation (3).  The x and y
coordinates serving as county centroids are given as eastings and northings.  They
indicate the relative location of each spatial unit from a hypothetical point that is
located in the southwestern corner.  All distances are given in miles.  For the
calculation of the scaled weights, the area of an average region is 775.7 square
miles, which is the result of dividing the total area (A=168,330.3 square miles) by
the number of counties (n=217).  The maximum local statistic was then compared
with the critical value, M*, computed using Equation (4).  We used a one-sided test,
with α =0.05.
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RESULTS

Breast Cancer Clustering in the Northeast
Figure 2, from the Atlas of Cancer Mortality, shows age-adjusted breast

cancer mortality rates for white females in the US for the period 1970 to 1994.
Compared with the average U.S. age-adjusted rate of 26.89 per 100,000, the
highest breast cancer mortality rates tend to be in the Northeast and in the northern
part of the Midwest. Geographic patterns clearly show that the excess rates in the
Northeast have persisted during the time period, although this dominance has
diminished over time, compared with the earlier 1950-1969 period (Devesa et al.,
1999a).

From the compressed mortality datasets, we identified 306,953 deaths from
breast cancer in the Northeast, implying an annual average age-adjusted death rate
of 31.87 per 100,000 females during the time period of 1968 to 1998.  The average
standard mortality ratio in the Northeast relative to the U.S. for the entire time period

Figure 2: Age-adjusted breast cancer mortality rates by county, white
females, 1970-74 (Source: Devesa et al., 1999a)
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is 1.13.   Figure 3a is a map of the standardized mortality ratio using Equation (5),
while Figure 3b shows a map of the p-values resulting from individual Poisson tests
of randomness in each county using Equation (6).

Figure 3: Spatial variation of breast cancer mortality:
(a) Standardized mortality ratio, 1968-98

(b) Probability map (p-values), 1968-98
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where the SMR in region i is the ratio of the observed number of deaths in region
i, xi, to the age-standardized expected number of deaths, λ i, and the Poisson
probability p(xi) represents the upper tail of the Poisson distribution with parameter
λ i.

The highest quartiles in Figure 3a are the areas showing a number of deaths
from breast cancer that is more than 14% above expected.  Figure 3b shows that
many counties in the Northeast have an observed number of cases that is statistically
significant relative to expectations, especially the darkest areas around New York
and Boston.  However, interpretation should proceed with caution.  The measure
of relative risk is likely to have extreme values in areas with small populations.  The
maps of p-values can also potentially be misleading because regions with large
numbers of observed and expected cases are more likely to appear as significant
on a map of p-values.  This can result from small departures from the underlying
assumption of a Poisson model (see, e.g., Cressie, 1993).

Figure 4: Spatial distribution of local statistics in the Northeastern U.S.,
1968-1998.
(a) Smoothed map of local statistics based on county centroids



Spatio-Temporal Changes in Breast Cancer Clustering   125

(b) Corresponding choropleth map of local statistics

Figure 5: Breast cancer clusters identified using maximum local statistics in
the Northeastern U.S., 1968-1998
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Figure 4 shows the spatial distribution of local statistics for the period 1968 to
1998 in the Northeastern US. Panel (a) is a smoothed map of local statistics
calculated at county centroids, and panel (b) is a county-level choropleth map
depicting the local statistics. Areas with local statistics greater than 3.45 can be
classified as statistically significant clusters.  Figure 5 shows the geographic location
of two clusters in the study area, exceeding the critical value of 3.45 when σ  is 0.6.
The maximum local statistic was 8.10, and was obtained in the center of the New
York-New Jersey-Philadelphia cluster.  The cluster contains 129,778 observed
cases and 109,958 expected cases, yielding a relative risk of 1.18.  A secondary
cluster is identified around Boston.  The maximum local statistic for this cluster is
3.95.  There are 16,848 cases observed and 14,381 expected in this cluster, with
a relative risk of 1.17.  The S-Plus program used in the calculation is attached as
an appendix.

Because the clusters in Figure 5 are quite close to the border of the study
region, we also explored edge correction in the following way.  A square grid
containing lattice points at intervals equal to 28 miles (which is, approximately, the
median distance between county centroids) was overlaid onto the study area.
These lattice points were used to assign 14 additional, hypothetical county centroids
to the outskirts of the New York-New Jersey-Philadelphia cluster, and six to the
outskirts of the Boston area. These new centroids were then assigned values (yi)
randomly chosen from the standard normal distribution, consistent with the
hypothesis of no clustering, and local statistics were recomputed.  Any edge effects
that might exist do not appear to be too severe, since accounting for edge effects
leads to a map that is almost identical.  Both clusters in New York-New Jersey-
Philadelphia and in Boston are only slightly larger, after correcting for edge effects.

Finally, we compared our results with Kulldorff’s spatial scan statistic.  We
performed 9,999 Monte Carlo replications with adjustment for age using the spatial
scan statistic and identified the New York-New Jersey-Philadelphia area as a most
likely cluster during 1968-1998, with a log-likelihood ratio that is significant at α =
0.01.  More than 30 counties in the area are included in the cluster; this is a larger
area than the one we identified.  In particular, it includes all counties in our analysis
plus an additional 13 counties.  Although the Boston cluster we identified is not
detected when using the spatial scan statistic, the statistic did identify the Buffalo
area as a secondary cluster, with a significant p-value.  Spatio-temporal changes will
be further investigated in the next section.

Spatio-Temporal Analysis and Retrospective Detection of
Changes

Figure 6 shows temporal trends in the observed and expected numbers of
breast cancer deaths in the Northeast.  The number of observed and expected
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deaths increases until the mid-1980s, and then declines during the 1990s.  The same
trend is apparent for age-adjusted rates (Table 2).  However, the standardized
mortality ratio displays a different temporal pattern, and has declined over the time
period.  To identify geographic variations of mortality in space and time, several
measures are used to examine the structure of the data.  Space-time persistence of
the SMR is measured by the correlation coefficient, which shows moderate
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Figure 6: Trends in observed and expected deaths from breast cancer in the
Northeastern U.S., 1968-1998

Periods No. of 
Deaths 

Age-adjusted 
Rate* 

SMR* Correlation 
between Periods 

Moran’s 
I 

1968-1978 101,987 30.75 1.158  .339† 

1979-1988 101,981 33.78 1.134 .330† .274† 

1989-1998 102,985 30.96 1.101 .306† .203‡ 
* Age-adjusted rates are annual average and per 100,000 female population; SMR= 
Standardized Mortality Ratio. 
† p<.01; ‡ p<.05, from 1,000 Monte Carlo simulations 

Table 2: Changes in female breast cancer mortality statistics in the Northeast,
for three time periods
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correlation of 0.33 and 0.306 in the comparison of two time periods (1968-78 to
1979-88 and 1979-88 to 1989-98).  Spatial autocorrelation using Moran’s I was
found to be significant at the 99% confidence level.  When broken down into 10-
year intervals, this measure shows a decline in spatial autocorrelation over time.

Figure 7: Spatio-temporal changes in breast cancer clustering in the
Northeastern U.S.
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Figure 7 shows spatial-temporal changes in statistically significant clusters in
the Northeast.  The primary cluster is found in the New York-New Jersey-
Philadelphia Metropolitan area.  It is big in size and is the only cluster that persists
over the entire time period.  A secondary cluster is found in Boston and its
surrounding area.  The Boston cluster declined over time and disappeared for the
period 1994 to 1998.  A small cluster in the Buffalo area is detected during the
period 1984-1989, with a local statistic of 3.83; the values of the average local
statistic and relative risk in Buffalo for the entire period are 3.14 and 1.23,
respectively.  Table 3 shows detailed information for clusters with significant local
statistics during the period 1968-1998.  Geographic locations, clustering periods,

Geographic Locations   
 

Clustering 
Periods 

RR* LS* Counties 

New York City 
Area 

1968-1998 1.18 6.77 Bronx, Kings, Nassau, New 
York, Queens, Westchester, 
Rockland, Suffolk, Richmond 

Northern and 
Central New Jersey 

1968-1998 1.18 5.51 Bergen, Burlington, Camden, 
Monmouth, Essex, Middlesex, 
Mercer, Hudson, Somerset, 
Union, Morris, Passaic 

NY-NJ 
-PA 

Philadelphia and its 
surrounding area  

1979-1998 1.17 3.85 Delaware, Montgomery, 
Philadelphia 

Boston Boston and its 
surrounding area  

1968-1993 1.18 3.87 Suffolk, Norfolk, Middlesex 

Buffalo Buffalo 1984-1988 1.27 3.83 Erie 

* RR: Relative Risk; LS: Local Statistic 

 

1969-1973 1974-1978 1979-1983 1984-1988 1989-1993 1994-1998 Clusters 
LS RR LS RR LS RR LS RR LS RR LS RR 

New York City  8.92 1.23 8.47 1.23 7.14 1.18 6.04 1.18 5.39 1.15 4.65 1.13 
New Jersey 6.51 1.23 6.06 1.18 5.64 1.19 5.16 1.17 5.32 1.17 4.34 1.13 
Philadelphia 2.36 1.09 3.26 1.14 3.87 1.20 4.32 1.18 4.93 1.19 4.36 1.19 
Boston 4.68 1.24 3.73 1.17 3.81 1.18 4.93 1.22 3.78 1.17 2.28 1.09 
Buffalo 3.03 1.25 3.32 1.22 3.11 1.21 3.83 1.27 2.98 1.25 2.60 1.20 

RR: Relative Risk; LS: Local Statistic

Table 3: Statistically significant breast cancer clusters identified using
maximum local statistics in the Northeast

Table 4: Spatio-temporal changes of relative risks and local statistics in the
Northeastern breast cancer clusters
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and corresponding counties in these clusters are identified and compared. Spatial-
temporal changes in these three clusters are further broken down into five smaller
clusters, and their changes in relative risk and local statistics over six time periods
are summarized in Table 4.

It should be noted that the size of the clusters found by this and similar methods
will depend upon the spatial definition of the study area, as well as the temporal
aggregation of cases. For instance, it will generally be easier to find clusters if cases
are aggregated over a long period of time than if only a single year of data is
examined. One might find additional clusters in the Northeast if the study region
were redefined to exclude the New York City area (which is characterized by
relatively high rates). Similarly, searching over additional spatial scales could lead
to clusters of different sizes.

Although the results from the cross-sectional spatio-temporal analysis show
significant breast cancer clustering in the Northeast, here we are interested in the
retrospective detection of significant changes in spatial patterns.  For each year,
multinomial probabilities ( pi) may be defined as the likelihoods that a given breast
cancer death is located in county i.  Of interest is a test of the null hypothesis that
these multinomial probabilities do not vary over time.  A test of this null hypothesis
versus the alternative that there is a single change point dividing the sequence of
multinomial observations into two distinct subsets (“before” and “after” the change
point) has been suggested by Srivastava and Worsley (1986).  They develop the
following test for detecting change in a sequence of multinomial observations.  Given
a n by p+1 contingency table with ordered rows, we wish to test for a change in the
row proportions after an unknown row, r.   Let Q2 be the usual Pearson 2χ  statistic

for testing association between rows and columns in the full table.  Let 2
rQ  be the

Pearson 2χ  statistic for testing association between rows and columns in the 2 by
p+1 table formed by aggregating the first 1,…, r rows and the remainder of the rows

(r +1,…, n).  The test statistic is 2 2
ˆ maxr rr

Q Q= .  Extramultinomial variation can be
accommodated; such variation may arise in those situations where the multinomial
trials are correlated or where the multinomial probabilities are themselves not
known with certainty.  The variance inflation factor, 2σ̂ r, may be estimated as

2 2 2ˆ ( ) /{( 2) }.r rQ Q n pσ = − −

The test statistic, adjusted for this extramultinomial variation, is 2 2 2
ˆ ˆ ˆ/r r rK Q σ= , and

the quantity 2
ˆ /rK p has an F distribution with p and (n-2)p degrees of freedom.

Before computing the test statistic, the annual observed vectors of county
deaths must be adjusted due to changes in expectations that occur as a result of
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population and age structure changes.  This is done by multiplying the observed
number of county deaths in year t by the ratio of the proportion of all expected
deaths (for the entire time period) that occur in county i to the proportion of all
expected deaths that occur in county i during year t.

The results are shown in Table 5.  The change point statistic is significant, and
indicates a change in the spatial pattern of breast cancer following 1989.  The data
is then divided into two subsets—1968-1989 and 1990-1998.  Further tests on
these two subsets indicate that the former period may be further subdivided into two
distinct subperiods—1968-1976 and 1977-1989.  The latter period (1990-1998)
does not contain any significant change points.  The 1977-1989 period may be
further subdivided into 1977-1981, 1982-1986, 1987, and 1988-1989.

It is of interest to ask which counties have contributed most significantly to the
changes that have occurred.  Table 6 depicts the number of deaths occurring in
selected counties for the 1968-1989 and 1990-98 periods.  The final column of the
table gives the ratio of the county’s fractional share of all deaths during 1990-98 to
its fractional share of all deaths during 1968-89.  Figure 8 shows the spatial
distribution of counties, with ratios greater than 1.2, between 0.8 and 1.2, and less
than 0.8, while Table 6 shows only those counties with ratios greater than 1.2 or less
than 0.8.  Counties with ratios less than 0.8 experienced a substantial decline in
breast cancer deaths from 1968-1989 to 1990-1998, relative to the rest of the

Sequence Change Point Kr
2 F p 

1968-1998 
 

1989 482.4 2.089 <.001 

1968-1989 1976 354.0 1.64 <.001 
1990-1998 
 

1997 252.2 1.168 .059 

1968-1976 1973 249.3 1.154 .075 
1977-1989 
 

1980 311.0 1.44 <.001 

1977-1981 1976 239.3 1.11 .171 
1982-1989 
 

1986 286.7 1.33 .002 

1982-1986 1985 217.9 1.01 .46 
1987-1989 1987 298.3 1.38 .009 
Homogeneous subsets: 1968-1976, 1977-1981, 1982-1986, 1987,  
                                      1988-1989, 1990-1998.  

Table 5: Retrospective detection of changes, 1968-1998
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County Deaths 
1968-89 

Deaths 
1990-98 

Ratio of County’s Share of 
Deaths 1990-98 to 1968-89 

Bennington, VT 174 56 0.746 
Waldo, ME 115 36 0.725 
Columbia, NY 282 96 0.787 
Cortland, NY 177 52 0.680 
St. Lawrence, NY 411 134 0.758 
Wyoming, NY 157 51 0.746 
Cameron, PA 33 10 0.676 
Wyoming, PA 86 29 0.781 
Oxford, ME 154 87 1.309 
Ulster, NY 636 345 1.258 
Fulton, PA 30 17 1.330 
Juniata, PA 64 43 1.577 
Potter, PA 56 43 1.770 
Sullivan, PA 21 17 1.894 
Sullivan, NH 129 81 1.466 
Venango, PA 233 126 1.256 
Warren, PA 153 87 1.271 
Essex, VT 18 12 1.597 
Orange, VT 69 43 1.451 
 

Table 6: Ratio of county’s share of deaths 1990-98 to 1968-89: Counties with
Ratios greater than 1.2 or less than 0.8

Figure 8: Ratio of county’s share of deaths during 1990-98 to county’s share
of deaths during 1968-89
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study region.  Those counties with ratios greater than 1.2 are generally small
counties, with the exception of Ulster, NY.

DISCUSSION
Overall, we found a primary and significant breast cancer cluster in the New

York-New Jersey-Philadelphia area that is similar to that found by Kulldorff et al.
(1997).  The size of the cluster tends to increase until the early 1990s, and has
decreased in recent years.  We also found a secondary cluster in Boston, where the
size of the cluster has decreased over time except during the period of 1984 to
1988.  The most notable changes for the time period in our analysis are recent
extensions of the New York-New Jersey clusters into the Philadelphia area and
declines in the Boston cluster.

Several factors may influence changes in the geographic clustering of breast
cancer mortality.  The established socioeconomic risk factors of breast cancer
might be used to attempt an explanation of the changing patterns of clusters.  One
of the difficulties in such an ecological analysis is to also obtain other biological or
individual risk factors of breast cancer, since geographic variations of disease and
changing patterns of clustering are in part explained by the distribution of those risk
factors.  In our analysis, we found that clusters in Boston and Philadelphia show
interesting patterns.  The former has disappeared during the 1990s, while the latter
has emerged as a new cluster.  Further investigations on the risk factors and other
factors affecting breast cancer clusters are necessary, since there is no supporting
evidence to fully explain these changing patterns.

One approach to explaining the changing patterns of clusters is to look at
changes in health-related risk factors.  From the SEER (Surveillance, Epidemiology
and End Results) statistics available at CDC Wonder (http://wonder.cdc.gov), we
note that breast cancer incidence in Boston during the period first increased, and
then remained level, while mortality has decreased (Table 4).  These patterns of
incidence and mortality might in part be explained by changes in health-related
behavior, and can be examined using the Behavioral Risk Factor Surveillance
System (BRFSS). The BRFSS is widely used by state governments for surveillance
purposes and contains information on the breast cancer screening behavior of
individuals such as breast exams, mammograms and pap smears.  For example,
during the 1990s the percentage of women aged 50 or older who had a
mammogram within the previous two years was highest in Massachusetts (Center
for Disease Control and Prevention, 2001).  Although there are time lags between
incidence and mortality from breast cancer, we might expect that higher incidence
due to early detection of disease will lead to further lowering of breast cancer
mortality in the area.
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There has been much recent interest in the changing geographic pattern of
various cancers stimulated by the National Cancer Institute’s Atlas of Cancer
Mortality (for example, geographic variations in lung cancer; see Devesa et al.,
1999b).  This interest reflects the importance of geographic perspectives on
epidemiologic study.  The identification of breast cancer clusters over time may not
only provide important clues to the study of cancer and environment relationships,
but also may suggest ways of monitoring diseases in a local area by identifying
emerging clusters.

This analysis confirms the finding of a previous study that there are significant
breast cancer clusters in the Northeast.  Application of a GIS-based kernel method
to breast cancer data during 1968-1998 shows the changing patterns of those
clusters over time.  The study adjusts for age and population only, while Kulldorff’s
study adjusted for race, urbanicity and parity, as well as age.  Other factors may also
play a role in forming geographic clusters.  Further investigation on other confound-
ing variables is required.  For example, population density can be used as a proxy
of urbanization or environmental exposures, and outcomes may exhibit spatial
autocorrelation.  For case-control studies, we can assess the effects of known risk
factors on disease, and then determine whether clustering exists after controlling for
the established risk factors of breast cancer and adjusting for covariates.

The investigation of changes in clustering in space and time could also play a
pivotal role in the search for environmental risk factors of breast cancer, since it is
also widely recognized that environmental risk factors may play an important role
in the development of breast cancer and in explaining geographic variability.
Examples of recent studies include the Long Island Breast Cancer Study and the
Cape Cod Breast Cancer and Environment Study.  These studies attempt to explain
elevated risks of breast cancer associated with environmental risk factors from an
environmental point of view (Brody et al., 1996; O’Leary, 1999).  The excess
mortality in the Northeast might be partially explained by the historically higher levels
of industrialization of the region. Once significant clusters are identified, it may prove
fruitful to search for possible influences of environmental risk factors in the areas
characterized by significant clustering.  This approach is valuable in uncovering the
etiology of breast cancer because exposures at critical times in the past, such as at
the time of birth, may cause breast cancer during later, adulthood years.

This study also demonstrates the usefulness of Geographical Information
Systems and spatial statistical methods that facilitate the detection of changes in
clustering over space and time.  Given the advantages of GIS in integrating various
sources of data with geo-referenced data, it has been widely adopted in the
monitoring of disease and the modeling of exposure to environmental risks.  The
investigation of spatial-temporal changes of clustering contributes to the develop-
ment of public health surveillance systems significantly.  With the additional
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development of new statistical methods to monitor and predict space-time cluster-
ing (e.g. Rogerson, 2001b), GIS can be effectively used in disease monitoring and
surveillance.
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APPENDIX

************************************************************************
Title: S-plus program to detect geographic clusters of breast cancer
# compute transformed breast cancer numbers, where nebc is the name of dataset,
# obs6898 and exp6898 are the variable name for the observed number of cases
# and expected number of cases, respectively.
bc1 <- sqrt(nebc$obs6898)+sqrt(nebc$obs6898+1)-sqrt(4*nebc$exp6898+1)

# find distance matrix d6
d2<-dist(c(nebc$east))
d4<-dist(c(nebc$north))
d5<-sqrt(d2^2+d4^2)
 n <- attr(d5, “Size”)
        full <- matrix(0, n, n)
        full[lower.tri(full)] <- d5
        d6<-full + t(full)

# s1 is cluster size (standard deviation of Gaussian kernel)
s1<-0.6

# find weights
w<-1/(sqrt(pi)*s1)*(exp(-d6^2/(2*775.7*s1^2)))
w9<-matrix(w,217,217)
w11<-w9[1,1:217]/sqrt(sum(w9[1:217,1]^2))

i<-2
    while (i<218)
{
w11<-append(w11,w9[1:217,i]/sqrt(sum(w9[1:217,i]^2)))
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i<-i+1
}
w2<-matrix(w11,217,217)

# find local statistics based on weights and transformed values
bc2<-matrix(bc1,217,1)
bc3<-t(bc2) %*% (w2)

# plot the map of areas exceeding the critical value of 3.45
dnorth<-seq(68,607,length=300)
deast<-seq(106,733,length=300)
graphsheet(image.color.scheme= “white on black”, num.image.shades =30,
image.color.table = “255,255,255|0,0,0”)
plot(nebc$east, nebc$north, xlab= “East(miles)”, ylab= “North(miles)”,
xlim=c(100,750), ylim=c(60,620))

i<-(interp(nebc$east, nebc$north, bc3, xo=deast, yo=dnorth, ncp=0, extrap=F))
image(i, zlim=c(3.45,15.42), add=T)
image.legend(c(3.45,15.42),x=650,y=105,size=c(0.9,0.25), hor=T, nint=100)
text.default(x=695,y=120,labels= “Local Statistics”)
title(main= “Breast cancer clusters in the Northeastern US, 1968-1998”)

# print local statistics and find maximum value
bc3
max(bc3)
************************************************************************
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    The purpose of this chapter is to review and compare two techniques to
map the mortality risk of a disease in small geographical areas. The first one
is a classical approach consisting of mapping standardized mortality ratios,
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which are maximum likelihood estimates of the relative risk under a Poisson
model of death counts. In a second step, the authors consider a Bayesian
approach that assumes a hierarchical model where the death counts follow
a Poisson distribution conditioned by the prior information. These methods
have been applied to the study of geographical variation in men’s lung cancer
mortality from 1978 to 1998 in Galicia, Spain.
    Mapping mortality using the first method has important drawbacks, and
there are difficulties to distinguish the mortality pattern. The Bayesian
methodology produces smoother maps with a clear mortality pattern and has
many advantages over the classical approach.

INTRODUCTION
Disease mapping is an increasing field of interest in the area of public health

(Moore & Carpenter, 1999), and the geographical distribution of a disease has an
important role in understanding its origin, its causes or its evolution.

In recent years, there have been many efforts to map mortality or incidence
from diseases (Lopez-Abente, Pollán, Escolar, Errezola & Abraira, 1996; Pickle,
Mungiole, Jones & White, 1996). One of the main problems has been the choice
of the appropriate measure to map. The most widely used indicator in geographical
representation is the Standardized Mortality Ratio (SMR); this offers the advantage
of eliminating the confounding effect of the variable by which it is adjusted, usually
age, but presents certain drawbacks when the population size varies over the map
(Breslow & Day, 1975). In such a case, estimators of different accuracy are
obtained in each area; areas having small populations—and thus fewer cases—tend
to register very extreme estimations of risk, which then dominate the map and hinder
epidemiological interpretation. This is a particular problem for rare diseases where
thousands of individuals are needed before a single case is expected to occur. This
makes it necessary to utilize information from neighboring areas in order to produce
better estimates.

Alternative risk measures may be obtained by applying other modelling
techniques that take the sources of spatio-temporal variation into account
(Bernardinelli et al., 1995). A simple technique consists in adjusting a Poisson
regression model that displays a log-linear relationship between risk and space-time
variables. While successful in reducing the variability in risk, this method continues
to pose a number of drawbacks. First, in geographical areas having few cases, this
model yields unstable estimations due to extra-Poisson variation. Furthermore, if
the hypothesis of spatial independence between risks does not hold, the model is
not appropriate as it takes no account of a possible correlation between areas.
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A possible solution to these problems is the Bayesian extension of the model
introduced by Clayton and Kaldor (1987) and further developed by Besag, York
and Mollié (1991). Basically, this approach provides a way to integrate, in the
estimation of the unknown relative risk, local information consisting of the observed
and expected number of cases in each area and prior information on the overall
variability of the relative risk, their potential similarity in neighboring areas and their
connection with geographically defined covariates.

In this work we compare the behavior of the mentioned techniques with the
purpose of estimating and mapping relative risks in small geographical areas; this is
illustrated by the analysis of the geographical variation in men’s lung cancer mortality
in Galicia over a 21-year period, taking into account ecological socio-economic
factors.

Galicia is a region situated in the northwest of Spain, with a population of
around 2,800,000 inhabitants and an extension of 29,575 Km2; administratively it
is divided into 315 municipal areas. In 1998, lung cancer was, in men, the second
cause of potential years of life lost, with 5,912 lost years, which supposed the
7.71% among all causes (Dirección Xeral de Saúde Pública, 2000). Lung cancer
mortality rates present a clear increasing trend during the study period (Figure 1)
due to the strong increment in mortality from lung cancer in people over 65 years.

To study mortality in depth, the following step could be the examination of rates
and its trend at the municipality level in order to distinguish areas of high or low risk.

Figure 1: Crude and age-adjusted lung cancer mortality rates in men in
Galicia, 1978-1998
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A problem would arise: how can we tabulate and deal with 315 estimators with their
confidence intervals and their evolution? Hence, geographical analysis emerges as
a suitable tool for analyses, synthesis and reporting results.

DATA
The study period, 1978-1998, was divided into three sub-periods of seven

years each: 1978-1984, 1985-1991 and 1992-1998.
Age was categorized as under 15 years, 15-24, 25-34, 35-44, 45-54, 55-64,

65-74 and over 74 years. Since very few deaths from lung cancer occur below age
44, we combine the first four categories, which results in five age groups.

Lung cancer mortality data in males, which consist of the numbers of lung
cancer deaths in municipality i for time period j, where i=1, …, 315 and j=1,2,3,
were obtained from the National Statistics Institute for the period 1978-1986, and
from the Galician Mortality Register for the period 1987-1998. Galician age-
specific male population figures were obtained from the 1981 and 1991 Censuses
and the 1986 and 1996 Population Registers.

Description of Covariates
It is well known that smoking is a very important risk factor of lung cancer.

Because of the fact that there is not direct information on the smoking behavior
across Galicia, it should help to include a measure of urbanization in the model, such
as urban living or socio-economic status, as a surrogate not only for cigarette
consumption but also for other risk factors associated with urban areas. The
covariates we have considered here are the total resident population per square
kilometer (DEN) as a proxy for urban living, and a socio-economic score (SES),
both at the municipality level and referred to 1991. The SES, obtained using the
methodology proposed in Silva-Ayçaguer (1997), is a summary of the following
variables: infant mortality rate, population density, proportion of people that live in
population centers with more than 1,000 inhabitants, proportion of men with high
studies, proportion of active people (population above 16 years) in industrial
activities and proportion of people in households without running water or
electricity.

MODELS
In order to estimate the relative risks (RRs), two techniques were used: a

classical approach (SMR) and a hierarchical Bayesian model. Though described in
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terms of lung cancer mortality data for Galicia, subject to the pertinent modifica-
tions, these models could be used for a more general application.

Classical Approach
Let Oi denote the number of observed cases; Ei the number of expected cases,

calculated by using the population broken down by age for each geographical unit,
plus the specific mortality rates for the Galician population; and let ξi be the RR.

The classical approach to disease mapping is based on the assumption that,
conditional on the Eis being known, the ξis are mutually independent. Moreover,
each Oi follows a Poisson distribution with mean Eiξi:

[ ] )(~,| iiiii EPoissonEO ξξ
Under these assumptions, the maximum likelihood estimate of ξi, denoted by

iξ̂ , is the SMR:

iξ̂ = SMRi = i

i
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O

Hierarchical Bayesian Model
Bayesian methods estimate the risk of an area by incorporating information

from adjacent areas, so as to reduce the effect of random fluctuations unrelated to
the risk. Furthermore, on taking account of spatial correlation between adjoining
areas, the resulting smoothed maps prove more informative (Bernardinelli &
Montomoli, 1992; Knorr-Held & Besag, 1998).

In the Bayesian approximation, Poisson variation is modelled at a first level,
and a model for the relative risks is specified at a second level, with area-specific
random effects further decomposed into two components: a spatially structured
component that takes into account the effects that vary in a structured manner in
space (clustering) and a component that models the effects that vary in an
unstructured manner between one area and the next (heterogeneity).

The hierarchical model is formulated as follows (Bernardinelli et al., 1995):
let Oij be the number of observed cases, Eij the number of expected cases, and ξij
the RR in municipality i (i=1, …, 315) and period j (j=1, 2, 3).

A likelihood model is specified for the vector of observed cases, given the risk
vector,

Oij | ξij ~ Poisson(Eijξij)
and the RR is modelled as

log ξij = α + φi + θi + (β+δi)tj + γXi + ηZi
where α is the mean of the logarithm for RRs over all areas, φi the clustering
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component, θi the heterogeneity component, tj the time, β the mean of the time trend
across all areas, δi the space-time interaction effect, and X and Z indicate,
respectively, the covariates DEN and SES, with γ and η as their corresponding
coefficients.

Estimation of the risk across time in each area is given by exp(β+δi). Following
Bernardinelli, Clayton and Montomoli (1995) notation, δi is named the differential
trend for area i; a value of δi <0 indicates that the trend in area i is below the mean,
while a value of δi >0 implies that the trend in area i is above the mean.

Bayesian modelling requires specification of prior distributions for random
effects.

The distribution model for the heterogeneity component is
[θi | θj, i≠j, σθ

2] ~ Normal ( iθ− ,σθ
2)

where

∑
≠
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By virtue of this prior distribution, it is assumed that variation in risk between
areas is independent and, as a consequence, posterior estimations of the area effect
will therefore tend towards an overall mean.

For the clustering component, a spatial correlation structure was used, where
estimations of the risk in any area depend on neighboring areas; this was achieved
by allocation of weights. Specifically, we take weights equal to 1 in cases where the
areas were adjacent (that is, share a common boundary) and 0 in cases where they
were not. The conditional autoregressive (CAR) model proposed by Besag et al.
(1991) was used:

[φi | φj, i≠j, σφ
2 ] ~ Normal( iφ ,σi

2)
where
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1=ijw  if i,j are adjacent (or 0 if they are not)
Taking the above hypotheses into account, this model tends to shift the

estimation of each individual area effect towards a local mean.
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Parameters σθ
2 and σφ

2 control the variability of θ and φ. Following the
recommendations of Bernardinelli, Clayton and Montomoli (1995), Gamma
distributions were considered for these parameters.

In order to carry out a full Bayesian analysis, hyperprior distributions for α, β,
γ and η must be specified; we assumed (improper) uniform priors for all these
parameters.

Estimation of Hierarchical Bayesian Models
For the estimation of the hierarchical model, simulation techniques are

required; in this case we used the Gibbs Sampler, which belongs to the Markov
Chain Monte Carlo (MCMC) methods and is implemented in the software
WinBugs (Spiegelhalter, Thomas, Best & Gilks, 1995). Using the above model and
the prior structures mentioned in this section, 12,000 iterations were performed,
discarding the first 2,000 to eliminate the effect of the initial values.

A convergence analysis was carried out in order to assess whether the
simulated chain converges to the stationary distribution. Several convergence
diagnostics have been proposed in the literature (Cowles & Carlin, 1996), the most
commonly used monitor the output of relevant parameters. We have used Gelman
and Rubin’s test, implemented in the Bugs Output Analysis program (BOA)
developed by Smith (1999), which consists in running parallel chains with different
starting values and testing whether the total variance between the different
sequences is no larger than the variance within each sequence. The ratio of these
two variance estimates gives a scale reduction factor, which should be close to 1
if the values produced by the algorithm are close to a sample from the stationary
distribution.

The MapInfo Professional 6.0 software was used to map the geographic
distribution of the RR, and quintiles of its distribution to specify cut-points.

Selection of Models
To select the best model of a collection of different Bayesian models, a

measure of goodness of fit—usually the deviance—and a measure of complexity—
the number of free parameters—can be used. The increase in complexity implies
a better fit, though at times the gain in fit is small when compared to the difficulties
of interpretation and calculation posed by a more complex model. A criterion that
enables simultaneous assessment of fit and model complexity is the Deviance
Information Criterion (DIC), a generalization of the Akaike Information Criterion
(Akaike, 1973) which was proposed by Spiegelhalter, Best and Carlin (1998)

DIC = D + pD
where D is the deviance based on posterior means of the parameters, and pD is the
effective number of parameters, which is obtained by subtracting a plug-in
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estimation of the deviance, calculated using posterior means of the parameters, from
the posterior deviance.

It must be stressed that DIC should not be used as a strict criterion for the
choice of the final model. Other considerations must be taken into account, such as
prior knowledge or robustness of the method. Furthermore, DIC is not intended for
identification of the correct model, but rather as a method of comparing a collection
of alternative formulations.

RESULTS
Before estimating and interpreting any results, the sensitivity of the conclusions

to changes in model specifications must be investigated, in this case by using DIC
to evaluate goodness of fit and complexity. In Table 1, we present the estimated pD,
deviance and DIC for the full model, described in the previous section, and various
simplifications of it.

The best two models in terms of DIC are Models I and II, which include the
space-time interaction effects. Although both models have the same goodness of
fit, the number of effective parameters in Model I, which contain 315 random effect
terms (heterogeneity effects) more, is bigger than the effective number of param-
eters of Model I. This suggests that heterogeneity effects fall far short of random
spatial effects in explaining inter-area variability in the RRs, to the extent that they
may possibly be redundant. As a consequence, the heterogeneity term was
eliminated from the model.

It was Model II that was therefore used for subsequent analyses, such as
estimation or introduction of covariates.

Table 1: DIC, deviance and pD for various hierarchical Bayesian models.

M odel DIC  Dev iance  PD 

I log ξ ij = α  + φ i +  θ i +  (β+δ i)tj   1228.60 1041.42 187 

II log ξ ij = α  + φ i +  (β+δ i)t j   1218.52 1041.42 177 

III log ξ ij = α  + φ i +  θ i +  β tj   1246.08 1081.42 165 

IV  log ξ ij = α  + φ i +β tj   1241.33 1081.42 160 

V log ξ ij = α  + φ i +  θ i   1240.87 1081.42 159 

VI log ξ ij = α  + φ i  1235.36 1081.42 154 

VII log ξ ij = α   2889.08 2881.42 8 
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Gibbs Sampler convergence was investigated using Gelman and Rubin’s test.
Scale-reduction factor values of around 1 were achieved, a symptom that
convergence was acceptable. Furthermore, the results are not noticeably altered if
a larger number of iterations were carried out.

Figure 2 shows the estimated RRs for lung cancer, obtained by classic
approximation and Bayesian estimation.

The RRs are less variable in Figure 2(b) than in Figure 2(a), with the effect of
smoothing being in evidence (SMRs range from 0.094 to 1.871; the Bayesian
estimates of RR correct this dispersion, since the pulled estimates range from 0.382
to 1.756). The SMRs’ variability reflects random fluctuations due to different
population size and corresponding small counts.

The maps highlight contrasts in the geographical distribution of risk; the north-
west and the south west parts of Galicia appear at higher risk. This pattern is stable
in both maps, although, as expected, it emerges more clearly in the map obtained
under the Bayesian model.

Figure 2: Lung cancer mortality in men in Galicia, 1978-1998: (a) Raw SMR;
(b) Bayesian smoothed RR using Model II; (c) temporal trend using Model II
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Figure 2(c) presents the temporal trend for lung cancer in the Galician
municipalities and shows that in areas with lower mortality, a rising trend has been
in evidence over the course of the last few years.

Figure 3 shows the spatial distribution of the covariates DEN and SES. Urban
living and SES show high collineality (they exhibit similar spatial patterns). Lung
cancer mortality rates are high in the most populous municipalities, which are also
wealthy. In view of the geographical patterns, it would appear that there might be
an association between these variables and lung cancer mortality.

Three different models were estimated with the covariates, and the goodness
of fit results are set out in Table 2.

Models VIII and X evince the same goodness of fit, yet the model that
incorporates the two covariates has the smallest DIC. The posterior estimations for
the coefficients of the covariates using model X are γ=0.0001 (DEN coefficient)
with a Bayesian credibility interval of [0.000036, 0.000159], and η=0.0145 (SES
coefficient) with a credibility interval of [0.01127, 0.01785], both significant.

Figure 3: Spatial distribution of the two covariates: (a) population density;
(b) socio-economic score

Table 2: DIC, deviance and pD for the hierarchical Bayesian model with
covariates

Model DIC Deviance  PD 

VIII log ξij = α + φi + (β+δi)tj  + γXi 1222.82 1041.42 181 

IX log ξij = α + φi + (β+δi)tj  +ηZi 1226.24 1061.42 165 

X log ξij = α + φi + (β+δi)tj  + γXi + ηZi 1192.60 1041.42 151 
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Figure 4 shows the estimations of the RRs obtained by adjusting the model with
both covariates, and, as expected, the RRs shrink further, i.e., they have a smaller
variation interval (RRs range from 0.403 to 1.702), confirming the relationship
between the covariates and the disease. This finding is reflected in Figure 5, which
depicts the SMR obtained by the classic approximation versus the RR yielded by
the Bayesian models.

Comparison Between Classical and Bayesian Models in Terms of Mean
Square Error.

This section seeks to demonstrate that Bayesian methodology yields better
results than the classical method. For comparison purposes, we use the mean

Figure 4: Lung cancer mortality in men in Galicia, 1978-1998. Bayesian
smoothed RR using Model II with covariates

Figure 5: Variability of the RR estimations in different models
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square error (MSE) of the risk estimations obtained by both methods. To calculate
this, we need the true RRs, which are unknown. Hence, the solution adopted
(Martins, Barreto, Guerra & Sakurai, 1998) consists of treating the RRs yielded by
the classical method as true, and simulating a series of new observed cases for each
area so as to enable estimation of the associated risks. The resulting MSEs are as
follows: for the Bayesian estimator 5.22, and for the crude SMR in the order of 7.61,
which means a reduction of around the 31.4%. Accordingly, there is a significant
difference in favor of Bayesian methods.

DISCUSSION
This study has addressed various issues in disease mapping: use of classical

methods versus Bayesian models, choice of the prior distributions and incorpora-
tion of spatio-temporal structures. The emphasis of this study was more on
comparing these methods with data than on making theoretical comparisons.
Conclusions about comparison of methods have limited validity.

The use of Bayesian models for computing the SMR instead of the usual
procedures is recommended. Maps of observed SMRs may be unstable and are
prone to wrong interpretation, as attention is drawn to regions with high or low
SMRs based on small populations. Smoothing overcomes the problem of
overdispersion and enables us to highlight the differences between municipalities.
The estimation of the parameters of the hierarchical model can be carried out with
algorithms belonging to the class of MCMC methods, which have improved in the
last few years and allow us to compute summary statistics for the distribution of RRs,
which would be extremely hard to obtain with a different computational approach.

The results obtained using Bayesian methods may be sensitive to the choice of
priors. Nevertheless, Bernardinelli, Clayton and Montomoli (1995) discuss the
insensitivity of Bayesian methods to the choice of priors, but in cases where data
are sparse and there is a prevailing conviction of geographical variability, this
independence ought to be explored with caution.

From this analysis, interesting results have arisen on the variability of the relative
risks. There is indication that a main part of the variability is accounted for by a local
clustering structure. Thus, there is some evidence that local risk factors, which might
correspond to a complex combination of environmental and socio-demographic
local characteristics, relatively stable over time, are influencing the spatial structure
of lung cancer mortality.

By including covariate values measured on regions rather than individuals, our
analysis is an example of “ecological modelling.” As in any ecological study, and due
to the “ecologic fallacy” (attributing effects measured in aggregate to individuals),
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one must interpret results with caution, even when pertinent covariates are included
because there are many potential factors of bias which can create discrepancies
between the results of a study that analyses data at an aggregate level and the results
of those that do so at an individual level. Furthermore, cancer mortality rates rise
with age, with the accompanying problem of worse diagnostic quality and ensuing
death certification, which may lead to bias in estimation.

In our study we assumed that the covariate measures are error-free. However,
this is rather unrealistic. Indeed, Bernardinelli, Pascutto, Montomoli and Komakec
(1999) and Xia and Carlin (1998) incorporate covariate measures that are not
error-free into the standard hierarchical Bayesian model and demonstrate that,
when the underlying error is taken into account, estimations prove more accurate.

Subsequent investigations have led us to assess the extension of the model with
the introduction of the age factor and even its interaction with time, because the
mortality behavior through the study years is different in the age groups. This
necessarily implies a greater number of observations, giving rise to problems in the
production of sufficiently accurate posterior estimations.

Another improvement involves the choice of neighbors. A recent study
(Vanaclocha et al., 1999) indicates that the option used in this chapter yields better
results, but it would nonetheless be interesting to experiment with other alternatives,
such as taking all municipalities lying within a given radius of kilometers as neighbors,
or taking k neighbors lying closest to a given municipality.
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One of the most powerful uses of GIS in the field of public health is as an
exploratory data analysis tool. By combining the three post-input defining
components of a GIS (data manipulation, data investigation, data analysis),
the spatial understanding of a disease can be furthered by identifying patterns
of cases, or associations between disease and other spatial phenomena (such
as elevation). This chapter sets the groundwork for one such exploratory tool
that could be used to identify the spatial and temporal patterns of an
infectious disease. The disease in question is raccoon rabies in West Virginia
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during 1999-2000. The exploratory tool, animation, has the potential to give
insights into an evolving disease pattern that current spatial cluster techniques
could miss. The current raccoon rabies epizootic presents a complex spatial
surface as multiple disease foci may be present. Added to this could be a
residual “background” or enzootic level of rabies. In order to reduce the
impact of multiple foci, an appropriate “scale” of animation is needed. This
scale has to be of a small enough geographic area that only one disease focus
is considered, and is of practical use so that other meaningful spatial
information (such as land cover or elevation) can be interpreted. The purpose
of this chapter is to decide on an appropriate method of identifying this scale
of animation for an infectious disease of this type.
    This chapter will select one commonly used technique, Nearest Neighbor
Hierarchical (NNH) spatial clustering, to identify the correct scale and
location on which to perform an animation. NNH spatial clustering will be
applied to three combinations of Raccoon Rabies data for West Virginia, for
1999, 2000 and both years combined. NNH cluster analysis will also be
performed on a four-county area identified as having the highest intensity of
rabies cases in the state. These results will then be compared to a preliminary
animation of rabies cases in West Virginia from which subjects were asked to
identify dynamically evolving disease clusters. An animation was also run for
the same area of high disease intensity. Cluster and animation results were
compared for similarities. It was found that a spatial cluster technique, such
as NNH spatial clustering, provides an adequate means of identifying the
scale and location on which a more sophisticated animation can be based. The
chapter concludes with a discussion of how, once a scale has been decided, a
more sophisticated animation can be constructed and ultimately used to guide
the placement of interventions such as oral vaccine barriers.

WHY ANIMATE RABIES?
The ultimate origin of the raccoon rabies virus variant remains obscure. The

first recorded cases of rabies in raccoons occurred in Florida in the early 1950s.
This initial focus slowly expanded over the next four decades throughout Florida,
Georgia and South Carolina. In 1977 raccoons infected with rabies were trans-
ported into the West Virginia / Virginia border area from Florida by hunting groups
(Smith et al., 1984; Jenkins and Winkler, 1987). These translocated animals were
the beginning of the most intense rabies epizootic on record in North America. The
epizootic burned quickly through the eastern seaboard, spreading at a rate of
approximately 10 to 20 miles per year. In 1980, 35 rabid raccoons were identified
in West Virginia and Virginia. By 1982, when the disease had spread into
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Pennsylvania (Jenkins, 1984) 760 rabid raccoons had been identified in Virginia;
745 are from 1981-82 alone (Hubbard, 1985). Factors that can affect the speed
of spread include the geography of the area and habitat conducive to high raccoon
densities (Bromley et al., 1979; Kaufmann, 1982) and seasonal conditions, which
affect food and shelter resources, general health and disease resistance (Carey et
al., 1978). The two epizootics (the first originating from Florida, the second from
the West Virginia/Virginia border area), eventually intersected in North Carolina in
1994 (Krebs et al., 1995). At the epizootic front, raccoon populations substantially
decline initially, and then gradually recover to a level supporting enzootic levels of
rabies.

As an example of how the epizootic could impact a state, Figure 1 shows the

Figure 1: The Spread of Raccoon Rabies in New York State
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total number of positive raccoon rabies cases as recorded by New York State
Health laboratories.  Presenting the yearly total in this way clearly shows how the
rabies “wave” passed through the state infecting the vast majority of the counties.
It should also be remembered that surveillance data of this type will always under-
represent the true extent of the disease, largely due to undiagnosed cases among
animals that are not submitted for testing. Figure 1, when presented as an animation,
provides an excellent example of how an infectious disease spreads. The geo-
graphical epizootiology of rabies data investigated at this spatially aggregated level
(by county) has previously been presented as a guide to oral vaccine programs
(Torrence et al., 1992). In order to gain true insight into both the spatial and
temporal interconnections of the disease, a finer spatial resolution is needed.

It is important to understand how both space and time interact in a rabies
epizootic. Not only does the disease progress spatially at a temporal rate, but there
is also a time frame to the disease in any one static spatial location. Fox rabies has
previously been found to exhibit such a temporal “cycle” (Tinline, 1988). Initially
disease cases will explode and then rapidly decline as the animal population drops
below a level capable of sustaining the disease (Yorke et al., 1979), or alternatively,
herd immunity is developed (Coyne et al., 1989). After a two-to-seven year cycle,
a second wave of disease will emerge as the population of vulnerable animals
(juvenile animals who have not encountered the disease) reaches a level capable of
sustaining the disease detectable by the passive system currently in place for public
health rabies prevention needs. This cycle could manifest spatially as seemingly
unconnected “outbreaks” of disease. The relative densities of rabies reservoir
species directly affects disease transmission patterns. Along the eastern seaboard,
raccoon populations occur at greater relative densities than foxes, perhaps
accounting for the overall sustenance of raccoon rabies for greater than 50 years,
whereas rabies among foxes in the Appalachians diminished and ultimately
disappeared spontaneously during the late 1970s. Disease control measures such
as localized population reduction or vaccine programs may best be focused on
“lulls” in the temporal cycle of the disease, as fewer animals are needed to be
reached in order to keep the susceptible population below the required disease
threshold point. For example, Brown et al. (1990) suggest that vaccine strategies
should be targeted during a spring or late winter vaccination, as a maximal level of
immunity could be passed on to kits (Rupprecht and Kieny, 1988).

Although raccoon rabies has not yet resulted in any known human cases (the
two-to-three human deaths in the U.S. every year are usually the result of bat
rabies), it is still an expensive disease to control. Estimates from post-epizootic New
York State are that over $2 million are being spent per year trying to control rabies
(New York State Department of Health, 1999) as compared to the pre-epizootic
expense of $10,000 per year. The money spent includes post-exposure prophy-
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laxis, loss to livestock, vaccination, public education and sometimes a vaccine
control program. There is therefore an economic as well as public health need to
control the disease. Controls previously enacted for fox rabies included hunting,
trapping, poisoning and gassing (Lewis, 1975). It is widely accepted though that
these measures are not effective long-term options (Lewis, 1975; MacDonald,
1980), particularly due to higher sustainable raccoon population densities and other
differences in the ecology and behavior. Oral vaccine is a publicly acceptable and
effective alternative to reduce the at-risk animal population. In order to effectively
contain, suppress and possibly eliminate raccoon rabies, it is important to under-
stand when and where the animals are at their most susceptible (Wandeler, 2000).

For this chapter, raccoon rabies in West Virginia, where the originally
transplanted epizootic began, is investigated for 1999 – 2000. By using cluster
analysis and animation, it will become evident that more than one disease focus
exists in the state. Added to this is a background level of rabies that might represent
the residual effect of previous disease foci (because of cycling). The surrounding
states of Pennsylvania, Maryland and Virginia have all been affected by the
epizootic, so spillover infections from these borders is certainly possible. Any
vaccine program would have to take into account this complex landscape, while
also considering how fast and in which direction the disease appears to be
spreading.

PREPARING THE DATA
All positive terrestrial animal rabies cases (excluding cases of bat origin) for

1999 and 2000 were compiled by the Centers for Disease Control and Prevention.
Local health personnel, predominantly sanitarians, were contacted and asked to
provide accurate case location information on detailed maps or decimal latitude and
longitude. Decimal latitude and longitude were calculated for cases indicated on
maps. The compilation of latitude and longitude is an important component for
running an animation or cluster analysis, as aggregate level data could be too coarse
to identify multiple foci.

An initial consideration when animating rabies is, which species is to be
animated? The current rabies problem on the eastern seaboard is raccoon rabies.
Indeed, of the 217 rabid animals found in West Virginia during 1999 and 2000, 152
(70%) were raccoons. Although it is possible that the strain of rabies carried by the
raccoons could spillover into other species, the virus has adapted to the degree that
these other species are less likely to perpetuate the spread, the most likely outcome
being a dead-end mortality. The question then arises, should these other rabid
animals be omitted from the animation? Although they might not contribute to the
further spread of the disease, they might be passive indicators of the disease
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movement, especially in areas of relatively few submissions. However, these
diseased animals might also result from another rabies virus variant, such as a
number of bat virus variants. Without laboratory verification of the strain, animals
other than the predominate terrestrial reservoir species should be omitted from the
animation.  The question still remains even if testing is available, should presumably
“dead-end” hosts such as a skunk infected with the raccoon rabies strain be
included? Further analysis of the occurrence of theses non-reservoir species cases
may illuminate their potential adjunct role in disease sustenance. Nonetheless, for
this chapter, only positive raccoon rabies cases were included.

The first step was to just consider the surface spatially, and not incorporate the
temporal interactions between the disease cases. For this, the Nearest Neighbor
Hierarchical (NNH) Spatial Clustering technique was chosen.  This is a commonly
utilized technique from a catalogue of methods designed to identify spatial clusters
(Everitt, 1974).  Spatial cluster techniques aim to group cases together into
relatively coherent clusters by optimizing various statistical criteria.  The first
statistical criterion used in the NNH spatial clustering technique is the distance from
each case to its nearest neighbor case and the grouping of two cases into a cluster,
if they (the two cases) are spatially closer (have a shorter distance) than would be
expected on the basis of chance.  This is determined by the probability level (p-
value) or level of significance (α).  Only cases which fit this criterion are clustered
at the first level (first-order clusters).  First-order clusters can, in turn, be clustered
into second-order clusters, etc., resulting in a cluster hierarchy.  The second
criterion used in the NNH spatial clustering technique is the minimum number of
cases that are required to form a cluster.  This criterion is used to eliminate small
clusters.  The resulting clusters are most commonly visualized as standard devia-
tional ellipses, which not only show the size of each cluster but the distribution of
cases within.  For this chapter, CrimeStat, a spatial statistics program, was chosen
to calculate the clusters in the form of standard deviational ellipses which  could be
exported as Arc View shape files and overlaid onto the disease surface within the
GIS (Levine, 1999).

For each of the cluster runs, the same significance level of 0.05% (or a 5%
likelihood that the distance from one case to its nearest neighbor could be due to
chance) was used. The number of cases that were required to form a cluster varied
according to the number of disease cases present.  For positive cases in 1999, a
minimum of 10 cases were required to form a cluster. The second cluster run
included both 1999 and 2000 level data, and again a minimum of 10 cases were
required to form a cluster. The third cluster run included just 2000 data. In this case,
no significant clusters were identified at the 10 case level, so the number of cases
required for a cluster was dropped to five. The results for these three cluster runs
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can be seen in Figure 2, with all the one-standard deviational ellipse outputs being
overlaid on the same map.

From Figure 2 it appears as though a clustering of cases is evident in the
northcentral region. Significant clusters overlap for both 1999 and 2000 data.
When 1999 and 2000 data were combined, the significant cluster was drawn
further to the southeast. The final cluster run was performed on the four counties of
this northcentral region. This changing of scale required the number of positive
cases, in order for a cluster to be identified, to be dropped to three.

NNH clustering identifies where significant disease areas occur for any chosen
time period (1999, 2000 or a season thereof), but no insight is gained into the
temporal progression of the disease. One attempt at visualizing this temporal
progression can be seen in Figure 3, which focuses into the northcentral region of
the state. On this map the overlapping cluster ellipses are included along with actual
disease cases and their dates of submission. Even so, from this graphic it is hard to
identify any temporal sequence or pattern to the rabies surface. It is for this reason
that animation could provide insight into understanding the spatial/temporal progress
of a disease.

Figure 2: All significant clusters found with the Hierarchical Nearest Neighbor
cluster algorithm
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ANIMATING RABIES CASES
Cartographic animation requires the addition of a temporal dimension to a

series of static maps that include visual variables, such as size, color, shape, etc.,
and two or three spatial dimensions (DiBiase et al., 1992).  The development of
cartographic animation from its start in the late fifties (Thrower, 1959) is well
documented in Campbell and Egbert (1990).  The most obvious application of
animation in both the social and physical sciences, and the one adopted for this
chapter, is a progression of static surfaces from a common viewpoint.  The temporal
dimension is ordinarily constructed from scenes sampled at intervals along the range
of a series, viewed in chronological order at a constant rate (DiBiase et al., 1992).
Animation has also previously been used in the visualization of disease, such as the
time-series animation of smoothed monthly incidences of childhood leukemia in
England from 1967 to 1987 (Openshaw et al., 1988), and the animation of the
diffusion of AIDS in Pennsylvania (Gould, 1989).  Both of these studies used
aggregated data surfaces rather than the progression of individual disease cases as
suggested by this chapter.

Figure 3: The temporal sequence of rabies cases associated where the
standard deviational ellipses overlap
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Preliminary Animations
In order to animate rabies for practical use, the scale of the animation has to

be sufficient to allow local level land characteristics to be identified on an underlying
map. In order to “scale-down” to a suitable area of West Virginia, initial animations
were run for 1999 data and subjects were asked to identify what they perceived
to be “clusters” of disease. A second animation was constructed for the same four-
county area as identified and then investigated by the NNH spatial clustering
analysis.

The first animation comprised of each positive raccoon rabies case for 1999
appearing sequentially (by date of reporting) on a county map of West Virginia.
Each case appeared on screen as a yellow dot, which then turned to a blue dot one
second later as the next reported positive case appeared on screen. All cases
remained on screen. Figure 4 shows the last animation slide, including all cases for
1999, and the overlays of areas identified as “clusters” by each of the 10 subjects.
Three general cluster areas can be identified on Figure 4. Sub-groups could also be
seen within each of these clusters.  Cluster 1 was the most consistently identified by
the test subjects.

The second animation was performed on the same four-county area as had

Figure 4: “Perceived” clusters from the 1999 animation
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been identified by both the NNH spatial clustering analysis and by the test subjects
(as Cluster 1). This animation included all cases for 1999–2000, and also included
a time chart; as each new case appeared as a yellow dot, so an associated yellow
bar, representing the third of the month from which the case was reported, also
appeared on screen. This time chart was a crude attempt at increasing the
sophistication of the animation by presenting a time frame to the disease.  Figure 5
displays subjects’ “perceived” clusters.

The “perceived” clusters of both animation runs matched the significant
clusters as identified by the NNH spatial clustering approach. This can most clearly
be seen in Figures 3 and 5. The two significant clusters found by applying NNH
spatial clustering to the four-county area were also regularly identified by the test
subjects. What is unclear is how much of an influence the method of animation had
on these perceived clusters, with subjects possibly being swayed by the final point
distribution irrespective of how the points were dynamically displayed. In effect the
subjects could be clustering a similar “static” data surface to the NNH spatial
clustering algorithm. The compounding effect of maintaining all cases on screen
could be diminished by graduating the color of cases by time. This approach will be
discussed in the next section.

Figure 5: “Perceived” clusters from the 1999 & 2000 animation
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Improving the Animation
The advantage of animating a disease surface is that an impression of both

spatial and temporal pattern (and their interaction) can be gained. In order to
construct this animation, a small enough area would have to be investigated that
would allow for detail to be included such as land cover and elevation. This chapter
has shown that the identification of this scale can be achieved by a common spatial
clustering technique such as NNH spatial clustering. Once the “scale” of investiga-
tion has been chosen, so more sophisticated animations can be constructed.

One problem with the animations presented in this chapter was how the
temporal dimension was displayed. Two problems occur here, how to separate
cases temporally that are not connected, and how to actually represent time. For
the first animation, each case was displayed in the sequence of reporting, even
though cases could occur from different foci (different sides of the state) and as such
have no spatial connection. This problem was reduced once a study area (the four
counties) had been identified as the disease cases are more likely to stem from the
same foci.

The second problem, how to represent time, was approached by including a
time chart which accompanied the animation. A more sophisticated approach
would be to have the animation interval scaled to the case reporting interval—a one-
day difference in an animal being submitted for testing being represented by a one-
second difference in the animation. If done correctly, this would also allow the
expert eye to see monthly and seasonal effects of the spread. Again the question of
multiple foci affecting this interval would be negated once the correct “scale” of
study had been identified.

A related temporal problem is that of case longevity within the animation. If all
1999 and 2000 data are to be included in the animation, should every case remain
on-screen even after the passage of a considerable time period, such as one year?
One solution to this problem would be to include graduated dots representing time
lags. For example, all cases within a 31-day period would remain their original
intensity (such as black). After 31 days, and before 62 days, the case would revert
from black to gray. Between 62 days and 93 days, the case would revert to white.
After 93 days the case would disappear from the animation. Figure 6 shows three
variations of Figure 5 where this graduated color approach has been adopted.
Notice how different the disease surface appears. Of course more work would
need to be done on identifying what would be the correct time interval for each class.
This would be further complicated by the possibility of variable incubation periods
depending on whether the animal was solitary or part of a communal den (Torrence
et al., 1992). Future research could also investigate a possible connection between
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a rise in the percentage of rabid raccoons (in the surveillance data) to a lagged
overall peak in the number of cases (Torrence et al., 1992). This relationship might
hold the key to identifying developing spatial clusters.

A further reason to adopt this approach is that an error frame should be placed
around each of these rabies submissions. The date used in the animation represents
when the animal was submitted, but was the animal found dead, or if it interacted
with a human when alive, how advanced was the disease? Because of this fact, the

Figure 6: Incorporating graduated color into the animation



Spatial and Temporal Patterns of Raccoon Rabies in West Virginia   167

data should be considered as having a uni-directional temporal uncertainty. This
means reporting dates should be considered as “fuzzy.” A graduated color scheme
would help “soften” the temporal sequence.

OTHER DATA CONSIDERATIONS
Rabies surveillance will always be an incomplete data set. Suburban areas

have been found to have higher raccoon densities (Bromley et al., 1979), and of
course better reporting likelihood (Jenkins and Winkler, 1987). Surveillance data,
therefore, is usually significantly positively correlated to the human population of an
area (people need to interact with these animals), and significantly negatively
correlated to distance from testing facility, representing structural inertia (Curtis,
2000). Techniques have been developed to improve the quality of the data by
identifying “holes” in comparison to the surrounding rabies submissions surface
(Curtis, 1999). This can lead to improved reporting in areas that do not follow state
requirements, or the first step towards an interpolated rabies surface in areas with
low human populations. It is also possible to improve these interpolated surfaces
by including a classified land cover surface, either through eliminating areas where
disease cannot occur (such as a water body), or by introducing a probability surface
of where an animal is likely to be found based on previous raccoon population
studies (Pedlar et al., 1997).

Similarly, GIS techniques can also be used to improve the quality of the
surveillance data. In many cases, either the negative or positive submissions do not
include a spatial coordinate. Land cover can again be used as a guide to distribute
points across the reporting area (usually a county). An alternative approach could
use the positive relationship found between submissions and human population. The
total number of submissions could be distributed in proportion to human population
across the reporting area. Human population would be mapped at the smallest
available spatial area, such as Zip Code, census tract or census block group.

Interpolation methods such as these could be used to calculate a surface of
disease rates. Obviously 10 diseased animals from a population of 100 are more
indicative of a disease problem than 10 from 1,000. Unfortunately, negative
submissions often do not contain spatial coordinates. If the data did contain
location, then a clustering technique such as the Spatial Filter (Rushton and Lolonis,
1996) could be used to identify significant disease clusters. By using the same human
population-to-submission relationship, small area disease rates could still be used
by the Spatial Filter (which assigns the value to the area centroid). However, this
technique suffers from the same limitations as NNH spatial clustering in that it is not
a spatial-temporal technique, meaning that some judgment again has to be made as
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to how to break the spatial data into temporal frames (one year, one season, etc.).
Torrence et al. (1992) claim that the percentage of positive raccoons (in effect

the rate) is a more accurate measure of the rabies surface and, as such, should  be
used in determining the placement of an oral vaccine strategy. A further research
direction could incorporate this “rate” directly into the animation by dividing the
research space into small units and animating (or clustering) the centroid of each unit
according to the rate of that cell. In effect a grid is draped over the research space
using the GIS and the rates are calculated. This technique is again reliant on negative
submissions having X Y coordinates, or alternatively applying one of the interpo-
lation measures mentioned previously. If the grid extent (the space area covered by
each cell of the grid) is too large, the power of the animation in understanding the
spatial movement of the disease will be compromised.

CONCLUSION
This chapter has taken the first step towards the practical use of animation in

disease control. As has previously been discussed, animation offers considerable
promise in understanding the spatial and temporal dynamic of a contagious disease.
However, practical considerations require the scale of the animation to be based
around relatively small geographic areas. This chapter has shown that a traditional
spatial cluster technique, such as NNH, can identify these areas for animation. The
advantage of using these techniques over the animations presented in this chapter
is one of implementation efficiency. Quite simply, it is quicker and easier to perform
a spatial cluster analysis than a preliminary animation. The time saved can then be
invested in a more sophisticated animation of the small geographic area.

Animation has an important role in future disease analysis. One could imagine
an expert watching cases animate over a three-tier surface comprising land cover,
elevation and a choropleth surface of interpolated (or recorded) submissions. In this
way factors affecting spread, both spatial and seasonal, could be viewed as the
disease moves through the area. The next logical step would be to calculate spread
rates, and extrapolate them out over areas which are currently disease-free. Current
software such as FLY! Software from PCI allow for satellite or photographic
images to be draped over digital elevation models resulting in a fly-through, with the
“expert” eye seeing the disease in as real a simulation as possible. We can even
imagine further into the future when virtual reality landscapes allow us to really “see”
the disease spread as it happens, putting us into the disease landscape. From the
animation capabilities of the present, or the virtual simulations of tomorrow,
visualizing an infectious disease in this manner can provide greater insight into
disease spread and control than can be achieved by modeling alone.
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    This chapter describes the use of disease clustering methods using diarrheal
disease data from a rural area of Bangladesh for which the authors created
a household-level GIS database. Understanding distributions of diseases in
space and time can be useful for etiologic research and socio-environmental
risk factor identification.  Disease clustering techniques are not only useful as
etiological research tools for chronic diseases but also for infectious diseases.
The magnitude of clustering in different areas can assist with the generation
of hypotheses about the underlying socio-environmental causes of the clusters.
Once clusters are identified, studies can then focus on the socio-environmental
characteristics of the areas where clusters are found.
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INTRODUCTION
Understanding distributions of diseases in space and time can be useful for

etiologic research and socio-environmental risk factor identification. Disease
clustering studies can help detect and monitor potential public health hazards.
Investigators must adjust for the spatial variation of the population at risk for a
disease when identifying disease clusters.  If a population distribution is not
controlled for, apparent disease clusters might simply reflect the distribution of the
population.  The goal of spatial clustering techniques is to distinguish between
clusters that are due to chance alone and clusters that are associated with some
underlying risk factor.  Hjalmars et al. (1996), for example, used a geographic
information system (GIS) and a spatial clustering algorithm to identify clusters of
childhood leukemia in Sweden.  In that country, there is public concern that
environmental factors, such as high voltage power lines and nuclear power plants,
are responsible for the disease.  While anecdotal information might suggest that
there is a relationship between environmental factors and childhood leukemia, the
investigators found no significant spatial clusters associated with nuclear power
plants in Sweden.

Disease clustering techniques are not only useful as etiological research tools
for chronic diseases but also for infectious diseases.  There will usually be more
spatial clustering in infectious diseases than in chronic diseases.  The magnitude of
clustering in different areas can assist with the generation of hypotheses about the
underlying socio-environmental causes of the clusters.  Once clusters are identified,
studies can then focus on the socio-environmental characteristics of the areas where
clusters are found.  This chapter describes the use of disease clustering methods
using diarrheal disease data from a rural area of Bangladesh for which we created
a household-level GIS database.

Several different methodologies have been developed for detecting geo-
graphical clusters of health events that are represented as points in space. Most
methodologies test for global clustering of events (Alt & Vach, 1991; Besag &
Newell, 1991; Cuzick & Edwards, 1990; Diggle & Chetwynd, 1991; Grimson,
1991; Moran, 1950; Ranta et al., 1996; Tango, 1995; Walter, 1994; Whittemore
et al., 1987).  Global cluster analysis is descriptive in nature, i.e., it (a) either detects
the location of clusters but cannot be used for inference or (b) can be used
inferentially but cannot be used to identify the location of specific clusters (Kulldorff,
1997).  This chapter uses the spatial scan statistic proposed by Kulldorff (1997),
which can detect spatial clusters of health events and be used inferentially. Clusters
of two types of health events, cholera and cholera-like diarrhea, were identified in
Matlab, Bangladesh.  Once the clusters were identified using several different local
cluster analysis techniques, we developed hypotheses concerning whether or not
the ecological niches of the two diseases are the same.
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STUDY AREA
Matlab has a population of approximately 200,000, and the area is endemic

with cholera and other diarrheal diseases.  It is 184 square kilometers and
comprises 142 villages. The population density is approximately 1,100 persons per
square kilometer. The people live in clusters of patrilineally related households
called baris.  Matlab is in south-central Bangladesh, approximately 50 kilometers
southeast of Dhaka, adjacent to the Lower Meghna River.  The Dhonagoda River
flows from north to south bisecting the study area into two approximately equal
parts. There are numerous canals in the area that remain dry in the winter and fill with
water during the summer monsoon. An embankment adjacent to the Dhonagoda
and Meghna Rivers was completed in 1989. The embankment was built primarily
to protect the area against monsoon flooding so that three annual rice crops can be
grown rather than the previous two. Implementing the embankment has markedly
differentiated ecological and economic characteristics between the areas inside and
outside the embankment (Emch & Ali, 2001; Myaux et al., 1997; Siddique et al.,
1991).

Most people living in Matlab have access to bacteriologically safe tube well
water; however, surface water is largely used for cooking, bathing and washing
utensils (McCormack et al., 1969; Emch, 1998).  Most people use unsafe latrines,
which are temporary structures with poor sewage systems (Emch, 1998).  Since
public sewage systems do not exist, people usually construct latrines near the edge
of ponds or on the banks of rivers and canals. In the absence of such water bodies,
holes are dug. Most of these holes remain uncovered, and in the rainy season feces
overflow and contaminate surface water. Such sanitation conditions are presumed
to be the cause of many enteric diseases in the area.

STUDY DATA
This study identifies cholera and cholera-like disease clusters for hospitalized

patients from the Matlab study area.  Disease clusters are identified for a three-year
period, from January 1, 1992, to December 31, 1994.  The study data were
obtained from demographic surveillance, hospital surveillance, and a spatial
database of the study area. The data obtained from the different sources were
integrated into the spatial database.   Detailed descriptions of the creation of the
Matlab GIS are published elsewhere (Ali et al., 2001; Emch, 1998), however, the
sources of data and the integration process are briefly described below.  Initiated
in 1966, the Matlab demographic surveillance system (DSS) has been recording all
vital demographic events of the study area population (D’Souza, 1981; Koenig et
al., 1988; Phillips et al., 1988).  The system assigns all people living in the study area
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a unique registration number, which identifies their village, bari, and household.
Community-based demographic data collection is done by 120 community health
workers who visit each household every two weeks.  The DSS database was used
to calculate an annual population during the study period.

The Matlab field research center includes a diarrhea treatment center (DTC),
which has in- and out-patient services as well as a laboratory for the identification
of pathogens.  The Matlab DTC treats about 7,000 to 8,000 diarrhea cases per
year at no cost to patients.  The DTC maintains motorized boats, which function as
a free ambulance service for diarrhea patients, thus ensuring excellent access to the
hospital throughout the study area.  Approximately 25 percent of the patients
admitted to the DTC are from the DSS area. Stool samples are collected for all
patients from the DSS area, and the samples are screened for enteric pathogens in
the hospital’s laboratory.  All cases of cholera and cholera-like diarrhea for people
living in the study area were identified from the hospital surveillance system. All
cholera cases were confirmed by laboratory tests. Cholera-like diarrhea is defined
as watery diarrhea without laboratory isolation of cholera-causing bacteria.

A vector GIS database of the study area was created in 1994 to facilitate
spatial analysis for health and population studies. The study area data were digitized
from 1:10,000 air photographs. The database includes several geographic features
of the study area including baris, the flood-control embankment, rivers and health
facilities (Figure 1).  A field survey was conducted to identify all baris by their DSS

Figure 1: Study area spatial database
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bari code.  The Matlab health, demographic and hospital surveillance databases
are managed at the individual level. Thus, disease and demographic data were
aggregated by bari, which are point objects in the Matlab GIS database.

SPATIAL SCAN STATISTIC
The SaTScan software produced by Kulldorff et al. (1998) detects spatial and

spatio-temporal clusters of disease.  The SaTScan software can (1) evaluate spatial
or space-time disease clusters and measure whether they are statistically significant;
(2) determine whether a disease is randomly distributed in space or in space and
time; and (3) perform geographical surveillance of disease and detect areas of
significantly high or low rates.  The SaTScan software uses either a Poisson-based
model, where the number of events in an area is Poisson distributed under the null
hypothesis, or a Bernoulli model, with binary event data for case-control studies.
The program adjusts for the underlying distribution of the population.  The Poisson
model can also adjust for categorical covariates.  With the Bernoulli model, cases
represent people with the disease being studied and non-cases represent people
without the disease or with another disease.  The cases and controls can be a sample
of the total population or they may constitute the total population.  With the Poisson
model, the expected number of cases in each part of the study area is proportional
to its population size.

All of the models implemented in SaTScan detect clusters in a multidimensional
point process and allow variable window sizes to scan for the health events within
the study area. The variable window size is important because we usually do not
have prior knowledge about the size of the area covered by a cluster. The method
also adjusts for the uneven distribution of the population in space while detecting for
clusters. The Poisson model is used when the population reflects the underlying risk
such as total person years in an area.  The method requires case and population
counts for a group of points and the geographical coordinates of the points. In the
Bernoulli model, the cases and controls are represented by ones and zeros, and the
population counts are replaced by the number of controls.

The spatial scan statistic uses a circular scan window, which is moved over the
entire study area.  The radius of the window varies continuously in size from zero
to a user-defined upper limit, which is a percentage of the total population at risk.
Clusters indicate areas with lower rates outside a circular scan window compared
with higher rates inside a circular scan window.  The location and size of the window
changes creating an infinite number of distinct geographical circles.  There are
different sets of neighboring areas within them and each is a possible cluster.  The
space-time scan statistic is defined by a cylindrical window, with a circular
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geographic base, for which height corresponds to time.  The base is defined the
same as for the spatial scan statistic, except that the height reflects the time period
of potential clusters.  The cylindrical window is then moved in space and time.  The
result is an infinite number of overlapping cylinders of different sizes and shapes,
covering the entire study region, where each cylinder reflects a possible cluster.

Since the scan test uses variable window sizes, computing the number of points
at any given time is not possible (Loader, 1991), therefore a likelihood ratio is
calculated. Under the Poisson model, the likelihood function for a specific window
is:
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where,
N= number of cases in the whole area,
n=number of cases within the window,
µ is the expected number of cases within the window under the null hypothesis, and
I() is an indicator function.

Since we only scan for clusters with high rates, I() becomes one when the
window has more cases than expected under the null hypothesis and in all other
cases it is zero. With a set N and m, the likelihood increases with the number of cases
in the window.

The likelihood function for the Bernoulli model is:
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where,
M=number of controls (or the population) in the whole area and
m=number of controls (or the population) within the window.

The likelihood function is maximized over all windows, identifying the window
that constitutes the “most likely” cluster.  The “most likely” cluster is the cluster that
is least likely to have occurred by chance.  The likelihood ratio for the window is
noted and constitutes the maximum likelihood ratio test statistic.  Its distribution
under the null hypothesis and its corresponding p-value are determined by repeating
the same procedure on a large number of random replications of the data set
generated under the null hypothesis, using a Monte Carlo simulation approach.

The models also detect secondary clusters that have the highest likelihood
function for a particular window and do not overlap the “most likely” cluster or other
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secondary clusters of higher likelihood. The program scans for clusters of geo-
graphic sizes between zero and 50 percent of the total population at risk. The
methods look for clusters without any predetermined cluster size.

CLUSTERS OF CHOLERA AND CHOLERA-LIKE
DIARRHEA

The cholera and cholera-like disease data were aggregated by bari for the
three study years (1992 to 1994) for the spatial cluster analysis.  In order to analyze
for space-time clustering, the data were aggregated annually. The baris that were
further than nine kilometers from the DTC were excluded from the analysis because
few cases were found in that part of the study area; this suggested that people might
have been less likely to seek medical care further from the hospital. We analyzed
approximately 6,000 baris within nine kilometers of the DTC. The three-year
aggregate population in these baris was 456,325.  There were 1,200 cases of
cholera, which is 2.6 cases of cholera per thousand people per year.  The aggregate
number of cases of cholera-like diarrhea was 729, which is 1.6 diarrhea cases per
thousand people per year.  SaTScan analyzes overlapping circles centered on each
bari, whose radii increase continuously until 50 percent of the total population is
covered.   In our example the test analyzed 18,000,000 (0.5 x 60002) distinct zones
and generated 999 random Monte Carlo replicas of the data set under the null
hypothesis, calculating the test statistic for each replica.

The Poisson model is appropriate for these data sets because it controls for
the background population.  The Poisson model results for cholera are summarized
in Table 1.   In addition to the “most likely” cluster, the secondary cholera clusters
are also reported in the table in the order of their likelihood ratio. The results include
only non-overlapping secondary clusters that are significant at the 0.10 level or

Zone Population  No. of 
cases 

Incidence 
rate/10,000 

Overall 
relative 
risk 

Log 
likelihood 
ratio 

P-value 
 

Radius 
in 
meters 

A 65,981 326 16.47 1.879 65.04 0.001 2856.74 
B 428 11 85.65 9.773 15.24 0.001 133.38 
C 450 10 74.06 8.450 12.56 0.010 63.45 
D 5214 34 21.73 2.480 10.76 0.062 728.32 

A is the "most likely" cluster, and B, C and D are secondary clusters 

Table 1: Spatial Poisson model: Cholera
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better.  Clusters comprised of fewer than four baris were not included.  The results
of the cholera-like diarrhea cluster analysis are presented in Table 2.  Since no
secondary clusters of cholera-like diarrhea were significant, the table is comprised
of only the “most likely” cluster of the disease.   Figure 2 is a map of the baris that
formed significant clusters of cholera. The “most likely” cholera cluster (A) is in the
southern part of the study area.  While the secondary clusters (B, C and D) are more
scattered, most secondary cluster baris are in the central part of the study area.
Figure 3 is a map of the “most likely” cluster of cholera-like diarrhea.  There are no

Zone Population  No. of 
cases 

Incidence 
rate/10,000 

Overall 
relative 
risk 

Log 
likelihood 
ratio 

P-value 
 

Radius 
in 
meters 

A 227,186 485 7.11 1.336 41.63 0.001 9090.92 
There were no significant secondary clusters 

Table 2: Spatial Poisson model: Cholera-like diarrhea

Figure 2: Spatial clusters of cholera derived from Poisson model
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significant secondary clusters. The map shows that the “most likely” cluster is
formed by a large number of baris.

The Bernoulli model method was used as a comparison for the Poisson model
results. In the Bernoulli model, the case file includes baris with at least one case,
while the control file includes baris with no cases.  The Bernoulli model was
employed using both cholera and cholera-like diarrhea; Tables 3 and 4 summarize
the results respectively.  Figures 4 and 5 are maps of the Bernoulli cluster baris.
Comparing Figures 2 and 4, which are maps of cholera clusters using the Poisson
and Bernoulli methods respectively, shows that the “most likely” clusters are in the
same areas.  However, the locations of the secondary clusters obtained using the
two methods differ. The map of cholera-like diarrhea obtained using the Bernoulli
model (Figure 5) does not completely agree with the map derived from the Poisson
model (Figure 3).

Figure 3: Spatial clusters of cholera-like diarrhea derived from Poisson
model
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Zone Population  No. of 
cases 

Overall 
relative 
risk 

Log 
likelihood 
ratio 

P-value 
 

Radius 
in 
meters 

A 860 180 1.751 33.46 0.001 2784.77 
B 649 118 1.521 12.02 0.033 3583.16 

A is the "most likely" cluster and is the secondary cluster 

Zone Population  No. of 
cases 

Overall 
relative 
risk 

Log 
likelihood 
ratio 

P-value 
 

Radius 
in 
meters 

A 2758 366 1.323 29.60 0.001 5006.29 
B 116 29 2.492 10.93 .093 741.81 

A is the "most likely" cluster and is the secondary cluster 

Table 3: Bernoulli model: Cholera

Table 4: Bernoulli model: Cholera-like diarrhea

Figure 4: Spatial clusters of cholera derived from Bernoulli model
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The Poisson model was also used to analyze clustering in space and time. The
health event and population data were arranged by year so that they could be
analyzed in a spatio-temporal framework. The results of the analysis are presented
in Tables 5 and 6 for cholera and cholera-like diarrhea respectively. As expected,
the results of the space-time analysis yielded fewer clustered baris for both
diseases. Figures 6 and 7 are maps of the baris that form the clusters. The cholera
cluster shown in Figure 6 appears to be a subset of the spatial cluster shown in Figure
2.  The spatio-temporal cluster of cholera-like diarrhea that is shown in Figure 7
seems to correspond to the spatial cluster identified in Figure 3.  This suggests that
there was little temporal variation in the cholera-like diarrhea data.

Figure 5: Spatial clusters of cholera-like diarrhea derived from Bernoulli
model



Etiological Research & Identification of Socio-Environmental Risk Factors   183

Zone Population  No. of 
cases 

Incidence 
rate/10,000 

Overall 
relative 
risk 

Log 
likelihood 
ratio 

P-value 
 

Radius 
in 
meters 

A 20078 306 50.79 1.901 61.99 0.001 2760.36 
B 291 19 217.58 8.146 23.30 0.001 93.07 
C 925 27 97.28 3.642 15.47 0.001 223.54 
D 143 11 256.94 9.619 15.08 0.001 133.38 
E 150 10 222.20 8.318 12.42 0.011 105.19 

A is the "most likely" cluster and B, C, D and E are secondary clusters 

Table 5: Spatio-temporal model: Cholera

Zone Population  No. of 
cases 

Incidence 
rate/10,000 

Overall 
relative 
risk 

Log 
likelihood 
ratio 

P-value 
 

Radius 
in 
meters 

A 75,807 485 21.32 1.336 41.54 0.001 9090.92 
There were no significant secondary clusters 

Table 6: Spatio-temporal model: Cholera-like diarrhea

Figure 6: Spatio-temporal clusters of cholera



184   Emch & Ali

DISCUSSION AND CONCLUSIONS
Isolating clusters of disease in space and time identifies places and periods in

which people are more likely to contract a disease.  Cluster analysis is one method
to define outliers in a normal spatio-temporal disease pattern for a particular area.
Therefore, clusters represent groups of important disease events for a particular
area that public health practitioners might want to investigate further.  Maps of
spatial clusters (Figure 4) and spatio-temporal clusters (Figure 6) reveal that the
disease foci of cholera are in the southern part of the study area.  After identifying
clusters, knowledge of a study area can lead investigators to develop hypotheses
about the socio-environmental characteristics of the areas in which the clusters are
found.  The southern part of Matlab is near the confluence of the Meghna and the
Dhanogoda Rivers.  It is also inside the flood-control embankment.  Therefore, the
disease clusters may be related to flood-control and proximity to these rivers and
should be investigated further.

Figure 7: Spatio-temporal clusters of cholera-like diarrhea
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Colwell et al. (1985) theorized that the location of the environmental reservoir
of cholera is rivers, canals, brackish ponds and streams.  The reservoir contains
dormant cholera bacteria, which multiply at certain times of the year because of
salinity changes and the number of available attachment sites (plankton) for the
bacteria.  Rivers, canals, brackish ponds and streams are heterogeneously distrib-
uted throughout the study area, thus the environmental reservoir varies spatially.
After periods of disease dormancy, people contract cholera from environmental
sources; subsequent cases are due to either primary transmission from the
environment or due to secondary transmission from other people.  We hypothesize
that the clusters in the southern corner of the study area are the result of primary
cholera outbreaks and then a large number of secondary cases.  The people who
settled in this area were displaced because of severe erosion of the Meghna River
and these people are extremely poor.  Characteristics peculiar to this population
may have predisposed this group to greater secondary transmission.

The study of spatial and spatio-temporal disease clusters is becoming more
widespread in geographical epidemiology and medical geography because of the
increasing accessibility of spatial analytical tools.  Not only are both local and global
clustering software packages easily accessible, but tools for collecting and manag-
ing locational information are also becoming less expensive.  The SaTScan software
used for this project is freeware (http://www.cancer.gov/prevention/bb/satscan.html).
The methods are, however, quite processor intensive.  In our example we analyzed
approximately 6,000 points using a Pentium III with 256 MB RAM and it took 3.5
hours to run.  Analyzing 8,348 points took approximately 10 hours.  Global
positioning system (GPS) receivers that result in spatial accuracies of less than 10
meters are readily available for approximately US $100.  Once data are collected
using GPS receivers, user-friendly desktop GIS software packages can be used to
manage and integrate disease and background population data.  The technical and
methodological complexities involved in identifying spatial clusters are now rela-
tively easy to overcome.   Therefore, spatial cluster analysis can now be used in
etiological research and to identify socio-environmental risk factors for diseases.
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    Despite considerable achievements in the control of schistosomiasis in
China, it remains one of the country’s most serious public health problems.
Geographic information systems and remote sensing provide new tools for
better understanding the spatial epidemiology of disease transmission.  We
present applications of these technologies at both the regional and local scale.
At the regional scale, we compare remote sensing approaches for mapping
snail intermediate host habitat in the mountainous environment and the flood
basins of the upper and lower Yangtze River, respectively.  At the local scale,
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we present the use of global positioning systems and geocoding of routinely
collected field data.  High-resolution IKONOS imagery is used to identify
landscape characteristics associated with disease transmission at the village
level.  We conclude with a discussion of the implications of these technologies
for improved disease control.

INTRODUCTION
Schistosomiasis has existed in China for over 2,100 years, and remains one of

country’s most serious public health problems (Chen & Zheng, 1999).  Nearly one
million Chinese are infected with schistosomiasis.  Despite great success in
eradicating the disease in some areas, schistosomiasis remains endemic in 118
counties in seven provinces, placing an estimated 40 million at risk of infection.

The disease is caused by infection by the Schistosoma japonicum parasite
(Webbe, Sturrock & Jordan, 1993).  Humans and other animals become infected
via contact with contaminated water.  In rural China, such water contact for humans
is inevitable for those involved in irrigated agriculture, fishing, cattle grazing, and
domestic duties, such as washing.  Children who often play in water are also at risk
of infection.

The lifecycle of S. japonicum begins with the maturation of the parasite into
adult worms in the blood vessels of the animal host.  These worms, called
schistosomes, sexually pair and lay eggs, which are excreted from the host in feces.
This is different from S. haematobium, in which eggs are excreted in the urine of
the infected host.  In the absence of waste treatment, these eggs are released back
into the environment.  The problem is compounded by the use of human and animal
excrement as fertilizer in agricultural areas.  A new form of the parasite, miracidia
hatch from the eggs when they become exposed to freshwater.  These free-
swimming miracidia must infect an appropriate snail in which to develop.  In China,
the amphibious Oncomelania hupensis snail serves as the intermediate host for the
parasite.  After a period of asexual reproduction, free-swimming larvae called
cercariae leave the snail and are transported in water where they come into contact
with animal hosts.  Cercaria can penetrate the intact skin of the host, thus infecting
them and continuing the lifecycle.

Spatial relationships between the parasite, snail and human (and other animal
hosts) habitats are strong determinants of disease risk.  For humans, two processes
are driven by spatial factors:  the infection process, which is determined in part by
where contact with contaminated water occurs, and the process of egg dispersion,
in which the spread of parasitic eggs is related to human activity such as the
geographic distribution of land-use and stool fertilizer use.  Snails are also affected
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by spatial factors: the location of suitable snail habitat, such as appropriate soil
conditions, moisture and temperature, and the influence of snail transport, which is
related to rainfall, terrain and hydrologic events such as flooding.

Spatial scale should be acknowledged when discussing the aforementioned
spatial relationships.  At the large, global scale, differences exist in the distribution
of intermediate snail host species and associated Schistosoma species, which have
been mapped by the World Health Organization (WHO, 1993).  At this scale,
ecological change such as global warming may affect the distribution of schistoso-
miasis (Martens, Jetten & Focks, 1997).  Our focus is on spatial factors that operate
at the regional (province and county) and local (village) scale within China.  We
discuss regional differences in the biology, ecology and epidemiology between
different schistosomiasis-endemic areas, the relationship between ecological change
and emerging schistosomiasis, and the use of remote sensing as a way to monitor
regional changes and perform disease surveillance.   In addition, we present our
recent work based in Sichuan Province, which illustrates practical uses of geo-
graphic information systems (GIS) and remote sensing to better understand
schistosomiasis transmission at the local scale.

REGIONAL METHODOLOGIES
Based on work published by Mao (1990), Chinese researchers generally

categorize schistosomiasis transmission into one of three different types based on
differences in the geography of endemic areas and the ecology of the intermediate
host snail.  These categories are: 1) plain regions with waterway networks, 2)
swamp and lake regions, and 3) hilly and mountainous regions.  Similarly, Davis et
al. (1999) describe four modes of schistosome transmission in China, which are
primarily characterized by the relationships between ecology and the establishment
of genetically different subspecies of snail that live in these ecologies.

One mode of transmission relates to Poyang Lake in Jiangxi Province, where
the O. h. hupensis subspecies of snail serves as the intermediate host.  The lake is
actually a flood plain completely enclosed by dikes, which resemble a lake during
the rainy season and grasslands during the dry season.  Because of this unique
environment, fishermen and other boatmen are primarily infected during the rainy
season, and cattle herders who take their cattle into the grasslands to graze are
primarily infected during the dry season.  It is hypothesized that more than 85% of
transmission is due to cattle, which serve as reservoir hosts for the parasite.
Because of annual flooding, most adult snails drown, making the life expectancy of
snails in this environment only one year.

A second mode of transmission is the Yangtze River islands and flood plains
such as those in Jiangsu Province.  As in Poyang Lake, O. h. hupensis subspecies
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of snail serves as the intermediate host in this environment, where the islands
resemble flat, marshy, grazing land, and the flood plains are moderately forested
grassland.  A major difference from Poyang Lake is the effect of the annual floods,
which in this environment sweeps and mixes snails, leaving aggregates of snails of
varying ages after the flood.

A third mode of transmission is the canals of Hubei Province, where O. h.
hupensis subspecies live at the end branches of canal systems in this province.  The
canal does not flood, as it is protected from the Yangtze River by dikes and water
gates that are closed during flooding.  As such, snail populations are probably stable
in this environment.

The last mode of transmission is the hills and low mountains above the Three
Gorges region of the Yangtze River, in Sichuan and Yunnan Provinces.  Here, O.
h. robertsoni subspecies are the intermediate host.  These snails are relatively
isolated from the effects of the flooding Yangtze, living primarily in small irrigation
ditches feeding mixed agricultural fields.  The snails, hence, have longer life
expectancies, with relatively stable populations, except when perturbed by changes
in farming practices.  Also since snails are most associated with agricultural fields
rather than grazing land, animals play a much smaller role in this mode of
transmission.

The underlying theme for both Mao and Davis’ classification of schistosomia-
sis transmission is that differences in geography are associated with differences in
ecology, which ultimately affect the nature of disease transmission.  We can model
this as a complex linkage (Figure 1) starting with natural ecology (weather, terrain
and soil conditions), which influences how humans use and interact with the land.
For example, ecology can determine to a large extent whether villagers primarily
farm, fish or raise cattle.  If, for example, villagers are primarily farmers, ecology can
dictate what crops they grow, which puts restrictions on how they farm (fertilizer

Figure 1: Linkage of spatial factors influencing human schistosomiasis
infection
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usage and irrigation system design).  In turn, both natural ecology as well as human
land-use can affect snail distributions (natural habitat and man-made habitats).
Whether a snail becomes infected is primarily a function of overall snail abundance
in an area, and whether humans or animals spread eggs into that area.  Human
infection depends on whether their activity patterns put them at risk of exposure to
cercaria released from infected snails.  Wrapping around this entire linkage are
economic and political factors, as well as social-cultural factors that affect disease
transmission.

As this model illustrates, changes in ecological conditions can cascade along
the linkages, and have the potential to profoundly change one’s risk of schistoso-
miasis infection.  At the regional level, one such change may be the construction of
the Three Gorges Dam along the Yangtze River (Gleick, 1998).  Currently, two
subspecies of snail—O. h. robertsoni and O. h. hupensis—are separated, each
occupying their own ecological niches, upstream and downstream of the gorges,
respectively.  This may change after the completion of the dam.  For example,
below the dam, the annual effects of flooding are expected to be minimized.
Correspondingly, there is the potential for great change in the established modes of
transmission, with unstable snail populations below the dam becoming stable due
to greater control of water, the lack of annual flooding and new resulting land-use
patterns (Hotez et al., 1997).  In contrast, above the new dam will be a huge
reservoir, filling the gorges.  Ensuing sedimentation may result in the development
of marshland-like environments, similar to the Yangtze island mode of transmission
that supports the O. h. hupensis subspecies. These environmental changes may
result in changes in the geographic distribution of both snail subspecies.

Remote Sensing Identification of Snail Habitat
The construction of the Three Gorges Dam presents a challenge for traditional

snail habitat surveillance.  Current methods rely heavily on field surveys, and as such,
are inadequate even for existing environments like Poyang Lake, where an
estimated 4,600 km2 of marshland is potential snail habitat.  Post-dam, environmen-
tal changes will probably occur not only in Poyang Lake, but also in other areas
upstream and downstream of the dam.  Moreover, such changes may occur rather
rapidly, making it nearly impossible for field surveys to accurately keep track of
evolving ecology and land-use.

Because of the Three Gorges Dam, there is strong motivation for the use of
remote sensing for regional snail habitat surveillance.  Remote sensing provides a
means for detecting environmental change over large areas in a relatively economi-
cal fashion.   Appropriate regional approaches to identifying snail habitat involve
methods that account for the aforementioned differences in snail habitat between



The Use of GIS and Remote Sensing in Schistosomiasis Control in China   193

provinces and modes of transmission.  The approach we take here is not to attempt
to create a generic classification of snail habitat that applies for all of China, but
rather, explicitly acknowledge that there are regional differences in snail habitat, and
develop unique remote sensing methodologies that attempt to identify characteristic
snail habitat in each region.  We present two case studies of this approach: O. h.
robertsoni habitats in Sichuan Province upstream of the Three Gorges, and O. h.
hupensis habitats in Poyang Lake of Jiangxi Province.

Landsat TM Classification of O. h. robertsoni Habitat in
Sichuan Province

Seto et al. (2002) present a classification of snail habitat in the Anning River
Valley in southwest Sichuan Province from Landsat TM satellite imagery.  The
Anning River Valley is an endemic schistosomiasis region that characterizes the
mountainous type of transmission in China.  The valley is approximately 48 km from
north to south, and approximately 24 km at its widest point.  The predominant snail
habitat in this environment is along the walls, just above the waterline of irrigation
ditches that feed agricultural fields.  As snails prefer the shaded vegetation and
slower moving water of smaller tertiary ditch systems, which typically are less then
one meter in width, the direct identification of habitat using remote sensing is difficult.
However, larger scale phenomena associated with snail habitat, such as soil
conditions, crop type and farming practices that vary from area to area within the
valley, are discernible through remote sensing.  However, since these phenomena
vary both geographically, as well as from season to season, the Anning River Valley
is a complex environment in which to identify snail habitat.

The availability of year-round soil moisture is an important factor in determining
snail habitat, and is one of the main reasons snails live in irrigation ditches.  Irrigation
ditches line agricultural fields that can be remotely sensed.  Hence, the presence of
agricultural fields within an area is a simple indicator of potential snail habitat.
However, not all irrigation ditches have continual water, as certain crops only
occasionally need water, such as corn, which is a major crop within the valley.  Also,
two growing seasons exist in the Anning River Valley.  Seasonal changes from
wetter crops to drier crops result in ditches that may have water in one season but
are dry in another.

The classification produced by Seto et al. (2002) discriminates between areas
that are snail habitat from non-habitat by correlating ground survey data with both
spring and fall Landsat TM data.  The relatively low cost, sufficient spectral and
spatial resolution, and regional coverage of Landsat TM make it ideal for such a
study.  Non-habitat areas were defined as areas that did not have snails, however,
were still within agricultural fields, and to some extent still represented potential
habitat that might become snail habitat if seasonal farming practices change.   As
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such, both habitat and non-habitat areas identify agricultural land.  The resulting
classification (Figure 2) clearly shows that land-cover such as city and residential
areas, mountain forests, lake and river are excluded as being potential snail habitat.
Within potential habitat, areas that are more likely to be snail habitat are identified
based on correct spectral properties of the vegetation in both spring and fall.  This
rather fine-tuned discrimination of spectral properties required a rather complex
classification method using clustering algorithms as well as maximum likelihood
classification (Duda & Hart, 1973; Foody, Campbell, Trodd & Wood, 1992;
Schowengerdt, 1983; Swain & Davis, 1978; Tou & Gonzalez, 1977).  A separate
validation study revealed that snail habitat could be identified in this environment
with greater than 70% accuracy from remote sensing data alone, but could be
potentially improved by incorporating information from soil maps.

Figure 2: Two panels showing Lansat TM of Anning River Valley (left) and
classification of habitat using isodata and maximum likelihood algorithms
(right)
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Landsat TM Classification of O. h. hupensis Habitat in
Jiangxi Province

In contrast to the relatively complex snail habitat of the Sichuan Anning River
Valley environment, which is influenced by human interactions with the land such as
mixed land-use and seasonal changes in crops, the Poyang Lake environment of
Jiangxi Province may at first seem somewhat simple.  A recent study comparing snail
habitat soil conditions of the Anning River Valley with that of Poyang Lake suggests
that, at the microenvironment level, the habitats are quite different (Seto et al., in
press).  The lack of particular soil chemicals and silt can serve to exclude snails from
areas of the Anning River Valley.  However, snails from Poyang Lake exhibit much
less dependence upon soil composition and chemistry since soils and snails are most
likely spread within the environment during flooding.  Recall that the lake is actually
a flood basin, which during the low water season is grassland upon which cattle
graze and become infected.  These grasslands comprise the potential snail habitat
in this environment, and are easily recognized from remote sensing.  However, the
ability for any particular area of grassland to support snails at any given time depends
upon soil moisture and the effect of seasonal flooding.  Grassland areas that are
submerged for too long, or not submerged long enough, will not be suitable for
snails.  These areas can change over the course of the season as well as from year
to year.  Hence, just as seasonality plays an important role in Sichuan, it also
complicates the use of remote sensing in the Poyang Lake environment.

Landsat TM is a good data source for identifying snail habitat in this region.  The
large size of the lake and large Landsat TM scenes complement one another.
Moreover, the relatively simple grassland snail habitat allows simple unsupervised
classification methods to identify land-cover types that are largely correlated with
such habitat.  Using images from five different dates, spanning April 1998 to January
2001 and both wet and dry seasons, and corresponding field validation data,
unsupervised classification methods can produce maps that identify snail habitat
with over 80% sensitivity (Figure 3) (Wu et al., 2001).  Specificity is not better than
70% though.  This is because the ability for identified areas to support snails is highly
conditioned on the existence of correct water level and soil moisture at the site,
which can fluctuate over time.  To account for the effects of flooding and changes
in soil moisture, we employ a more complicated approach for this region, which is
described in Seto et al. (2002).  We first determine the maximum extent of potential
snail habitat (grasslands) from the lowest water seasonal image using unsupervised
classification.  We then determine, from different images over the course of the rainy
season, how these grasslands become covered with water.  Grassland areas that
are under water for too long or too short a period of time are too wet and too dry,
respectively, to support snails.  Those areas that spend just the right amount of time
under and above water are optimal snail habitats.
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LOCAL METHODOLOGIES
In contrast to the regional methodologies useful in exploring larger-scale

evolutions in land-use and snail habitat, smaller-scale applications of GIS and
remote sensing are useful in understanding disease transmission at the local village
level.  Identification of snail habitat at the regional level is important since presence
of the intermediate host is a necessary component to transmission.  Snail presence
indicates that there is the potential for disease transmission; however, it does not
indicate the extent of disease transmission.  As illustrated above, human infection
is not only linked to the distribution of snails, but also to human activity.  The amount,
density and degree of overlap between the spatial distributions of snails, cercaria
and human water contact ultimately determine the extent of disease transmission

Figure 3: Unsupervised classification of November 1999 Landsat TM Data
for the Poyang Lake Region, with potential snail habitat contained with dikes
and shown in grey, water shown in white, and areas outside the dikes shown
in black.
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within a village.  Hence, local methods focus first on understanding the density and
spatial distributions of snails and cercaria within a village setting, and second on
understanding how land-use and water contact activity coincide with those
distributions.

Figure 4: Locations of 20 study sites in the Anning River Valley.
Residence groups are:
1. Daxing Xinming Group 3 11. Chuanxing Xinqiao Group 4
2. Daxing Xinming Group 7 12. Chuanxing Haifeng Group 5
3. Daxing Shian Group 5 13. Gaojian Chensuo Group 2
4. Daxing Jianxing Group 6 14. Gaojian Zhongsuo Group 8
5. Chuanxing Jiaojia Group 4 15. Gaojian Tuanjie Group 2
6. Chuanxing Zhaojia Group 9 16. Gaojian Wangjia Group 1
7. Chuanxing Hexing Group 1 17. Gaojian Wangjia Group 5
8. Chuanxing Minhe Group 1 18. Hainan Hetao Group 6
9. Chuanxing Minhe Group 3 19. Hainan Gangyao Group 5
10. Chuanxing Xinlong Group 7 20. Hainan Gucheng Group 6
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Our methodologies were developed for 20 residence groups (natural villages)
near the city of Xichang, in the Sichuan Anning River Valley region.  The villages are
typical of the environment of about 90% of the population in the Daliang Mountain-
ous Region.  Here, the climate is subtropical with an annual average temperature of
17°C and annual rainfall of about 1000 mm, over 90% of which falls between the
beginning of June and the end of October.  The residence groups lie within a 12 x
12km area surrounding Qionghai Lake in the valley (Figure 4), and represent
approximately 3,900 individuals in four townships: Gaojian, Chuanxing, Daxing and
Hainan.  The landscape is largely irrigated agricultural land, with two growing
seasons.  The living and working style of people in a residential group are usually
very similar, and the fields that they farm are usually adjacent to their housing
areas.  Crops and farming practices can differ between townships, which is largely
related to differences in natural terrain, soil conditions and socioeconomic factors.
In the lowland (elevations 1500 to 1600m) residence groups near the lake, the
predominant crops are rice paddy and wheat, whereas in residence groups in the
terraced foothills (elevations 1650 to 1850m), tobacco, garlic and corn are more
common.  In general, the agriculture typical of the river valley plains does not rely
heavily on animal husbandry.  Preliminary analysis of animal data collected in the fall
of 2000 suggest that animals play a small role in disease transmission with small
numbers of buffalo and horses, and low infection in each group.  In contrast,
historical evidence suggests that in some villages over half the human population can
be infected.  Human infection prevalence is generally thought to be highest for the
Daxing groups in the terraced foothills away from the lake, medium for Chuanxing
groups, and low for Gaojian and Hainan groups that are near the lake.  The dramatic
difference in infection over such a small geographic area is most likely related to
differences in the aforementioned terrain, soil conditions and economic consider-
ations, as these factors influence land-use and choice of crops within residence
groups and townships.   Different crops, in turn, require different farming practices,
and affect water contact, and human and animal fertilizer usage, two important
factors that drive disease transmission.

Ditch Mapping and Georeferenced Snail Surveys and
Mouse Bioassays

The risk of infection to humans from water contact is directly related to the
concentration of cercaria in that water.  Unfortunately, it is difficult to accurately
measure cercarial concentration in water in the field.  Methods with which we are
familiar involve the capture of cercaria on a film, or by filtration, which has limited
accuracy, is difficult to setup and impractical for routine use.  Instead, two methods
are relied upon as surrogates for cercarial concentration.  The first method is to use
mouse bioassays to estimate cercaria levels.  The second method is even more
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indirect, in which snail surveys are used to estimate the level of snail infection, which
are to some extent an indicator of cercarial loading on the environment.

In the traditional snail survey, small areas of irrigation ditch (potential habitat
for snails) are sampled for snails.  The protocol involves sampling a kuang (a
0.11m2 square frame) at fixed intervals roughly 10m apart (Gu, 1990).  Snails are
collected, crushed and examined under microscope for the presence of the parasite.
This results in estimates of the number of total snails positive (infected) snails, and
frames without any snails within a village.

One of the problems with the traditional protocol is that it does not characterize
the spatial distribution of the snails within a village.  Seto et al. (2001) describe a new
protocol in which ditches are first mapped with the Global Positioning System
(GPS).  The resulting map is then used to geocode snail survey results.  There is
considerable practical value to these maps, as field researchers can clearly see
clusters of high snail density, and perhaps more importantly, positive snail density
within the village (Figure 5).

Figure 5: An example GPS ditch map from one of our 20 villages illustrating
the spatial distribution of snail survey and mouse bioassay data
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Snail surveys were conducted for the 20 Anning River Valley villages using the
GPS protocol in the summer of 2000.  Snails within kuang were sampled at fixed
10m intervals.  This interval was determined from an assessment of the spatial
aggregation of snail populations along several representative ditch segments, and
corresponds to the same distance used in the traditional survey approach.  Snail
survey results for the four townships suggest a positive correlation between number
of snails and disease prevalence (Table 1).

There is an inherent problem with using snail survey results to estimate disease
risk.  This is due to the relatively low proportion of snails that are infected within a
village, which can at times be as low as 0.1%.  A few infected snails in an area might
conceivably release tens of thousands of cercaria, which drives the infection within
the village.  There is a chance that infected snails might be missed as a result of the
snail sampling process.  Hence, in addition to snail surveys, mouse bioassays can
be set up at key locations in the village to estimate cercarial concentrations.  In a
mouse bioassay, a cage of mice is dipped into the surface water of the ditch location
for a fixed number of hours each day for a few days, usually totaling 10 hours of
exposure.  After a month, the mice are sacrificed, and the worms within them are
counted.

Mouse bioassays were performed in each of the 20 villages.  The GPS ditch
map played an important role in designing the mouse bioassay study.  Locations
were chosen at key water contact locations close to residential areas, and also at
inputs to the village to determine what proportion of the cercarial load was attributed
to influx from adjacent villages.  A GIS database consisting of the ditch map, and
snail survey and mouse bioassay results was implemented.  The GIS can be used
to first identify the locations of positive mouse bioassay, and second to trace
upstream from these locations to identify potentially problematic snail populations.
The spatial relationship between snail populations and positive mouse bioassays
can present opportunities for disease control.

 Ave # Snails 
Ave # Positive 

Snails 
Human 

Prevalence  
    
Daxing villages 1,496 19 High 
Chuanxing villages 820 7 Medium 
Gaojian villages 461 0 Low 
Hainan villages 652 0 Lowest 
    
 

Table 1: Relationship between snail survey data and human prevalence
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Remote Sensing Identification of Factors Related to
Disease Transmission

Remote sensing played an important role in identifying snail habitat at the
regional scale.  Here we revisit the use of remote sensing, now focused on defining
more clearly the spatial relationships between disease prevalence and snail habitat,
natural landscape, land-use and human activity at the village level.  These within-
village relationships are best studied with high-resolution imagery.  IKONOS data
from Space Imaging, Inc. was acquired for an area that covered 19 of our 20
villages in December 2000.  The IKONOS scene covers an 11km x 11km area,
and includes four multispectral bands at 4m resolution and one panchromatic band
at 1m resolution.  At these resolutions, the ability to identify landcover such as
residential units, roads, field plots, terraced land and potential crop type is greatly
improved.

The goal of our preliminary analysis of the IKONOS data was to correlate
different landcover types with disease prevalence by village.  The analysis began
with a supervised classification of the 4m multispectral IKONOS data using
maximum likelihood classification to identify 13 landcover types.  Subsequently,
circular buffers centered at each village were created.  These buffers represent the
area of influence, within which landcover, such as the number of residences and
amount of agricultural fields, for instance, might affect disease transmission.  The
buffers were allowed to extend beyond the political boundaries of the village since
previous experience with GPS ditch mapping suggested that cercarial transport
extends beyond village boundaries.  Two buffer radiuses were used for each village:
a 500m radius to capture near-field effects, and a 1000m radius to capture far-field
effects.

Classification and Regression Trees (CART) (Breiman, 1984; Steinberg &
Colla, 1997) was used to correlate landcover types with high, medium and low
human prevalence villages.  The result of this preliminary analysis was that the
majority (five out of six) of the high prevalence villages most notably lacked
landcover corresponding to large roads.  These villages are predominantly in
Daxing County to the east of the lake and separated from the city of Xichang and
more prosperous areas by a mountain ridge.  Daxing is not only more remote, as
evidenced by the lack of large roads, but is also more agricultural, with farming that
is quite different from the other villages in the study area.  Located in the foothills
of the mountains, the villages are largely terraced fields, growing less rice paddies,
but more tobacco, which requires more fertilization.  Increased fertilization results
in more parasite eggs in the environment and higher disease transmission.  Also,
being farther from the lake and city, it is hypothesized that more Daxing villagers
work in the fields, than in other relatively safer occupations.
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Villages that do have large roads are predominantly low and medium preva-
lence villages.  Medium prevalence villages have a higher proportion of land
devoted to crop fields, as opposed to rice paddies, than low prevalence villages.
Crop fields accounted for more than 34.8% of the landcover in seven of the eight
medium prevalence villages, whereas all five low prevalence villages had less than
or equal to 34.8% crop fields.  This is consistent with experience from snail surveys,
which suggest that ditches lining paddy fields have fewer snails than those lining crop
fields.  Furthermore, rice paddies are usually fertilized with chemical fertilizer,
reducing the risk associated with widespread parasite egg distribution with stool
fertilizer.  The larger 1000m radius buffer had a greater impact on prevalence than
the smaller 500m radius buffer, illustrating the influence of landcover from neighbor-
ing villages.

Snail habitat was also correlated with landcover derived from IKONOS data.
The GPS ditch maps and geocoded snail survey results were registered to the
classified IKONOS image.  Buffers were created by smoothing the snail survey
data using an inverse distance weighted interpolation over a 20m radius from each
snail sample location.  In a comparison of low snail areas (one-to-five snails per
kuang) and high snail areas (>20 snails per kuang), we found little difference
between landcover.  However, the differences that existed suggest that snails prefer
areas that are less sandy and consist of crop or bare fields.  Moreover, the results
of a comparison of the landcover for all snail habitat (>=1 snail per kuang) versus
the landcover for the entire villages (500m radius circular buffer centered on village)
suggest a slight snail preference towards ditches that line crop fields rather than
sandy land or residences.

Thus far our work with IKONOS has been limited to rather crude classifica-
tions of the 4m multispectral data.  Given the importance of the crop landcover type,
an eventual goal is to be able to finely tune a classification to particular crop types
for the Anning River Valley villages.  The ability to pinpoint different crops through
remote sensing will allow us to determine the location of high stool fertilizer usage,
snail populations, and different types of harvesting and water contact exposure.  A
crop type classification would ultimately require new fieldwork and the develop-
ment of new classification algorithms, which we anticipate will be based on the
higher resolution 1m resolution panchromatic IKONOS data.  From visual
interpretation of the panchromatic data, it is possible to identify rows of crops,
which look different from paddies.  Furthermore, the structure of terraced fields
associated with high disease transmission villages can be identified.  A problem with
such high-resolution imagery is actually too much information, as automated
classification algorithms will need to be developed to perform pattern recognition,
identifying landscape features from the reflectance values of clusters of adjacent
pixels.  We have begun development of such contextual classifiers based on
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IKONOS data (Franklin, Wulder & Gerylo, 2001), and hope to be able to apply
them to schistosomiasis.  Furthermore, given the importance of elevation as a
discriminator between high and low prevalence areas, we hope in the future to
generate digital elevation models using IKONOS, which will allow for a better
understanding of the relationship between elevation, agricultural practices and
disease transmission.

IMPLICATIONS FOR CONTROL
Understanding the spatial distribution of disease and the intermediate host at

both the regional and local scales, and how such distributions may change over time,
are necessary for public health planning and resource allocation.  This is especially
true for a large, populous and rapidly developing country such as China, where
limited funds, ever-changing land-use and modernization through water resource
projects require such methods.  In China, the available control measures are health
education, chemotherapy, snail control and environmental modification. We assess
the implications of our methodologies on each of these control measures.

At the regional level, remote sensing provides protection against the threat of
disease emergence via broad surveillance of changes in the distribution of the
intermediate host. The emergence of snail habitat should initiate the allocation of
resources for field studies, and the establishment of county-level resources for
health education and chemotherapy administration.

The methods we have presented here explicitly account for regional differ-
ences in snail subspecies.  Snail subspecies should be treated differently, not only
because of their adaptations to different environmental niches, but also because of
their potential co-evolution with the schistosome parasite.  The efficacy of future
schistosomiasis vaccines may exhibit regional variation corresponding to the
geographic distribution of snail and schistosome subspecies.  In the absence of a
vaccine, current strategies employing snail control either through the application of
focal molluscicides or environmental modification rely heavily on the ability to
understand regional differences in snail subspecies and their spatial distributions.

At the local level, within a region with snail habitat, the spatial relationships
between landscape features can differentiate low and high transmission villages.
Our GPS ditch maps illustrate the spatial distributions of snails, cercaria and
potential water contact zones.  If high-risk sites can be identified on such maps,
strategies employing focal mollusciciding, small-scale environmental modifications,
such as reengineering troublesome segments of ditch, are more likely to be effective.

Remote sensing at the small-scale village level using IKONOS imagery is not
intended as a means for performing disease surveillance.  High-resolution imagery
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is too expensive to obtain for large areas.  Instead, we view high-resolution remote
sensing as a way to develop a generic understanding of the linkage between
landcover and epidemiology, and quantifying the relationships illustrated in Figure
1 within a particular region.  If, through the analysis of remote sensing data, we
understand the relationship between snail habitat, water contact and particular
crops, it will be possible to determine risk within a village based on simply how much
of a risky crop type is grown within and around the village of interest.  For control,
socioeconomic factors make it difficult for villages to change what they grow.
However, some areas in Sichuan have effectively controlled schistosomiasis
through environmental modification, by radically changing from high-risk crop fields
to low-risk orchards.

Chemotherapy is widely administered in endemic areas as the strategy of
choice for controlling morbidity and reducing transmission.  There are generally two
options for administering Praziquantal, the chemotherapy drug.  One option is to
provide mass treatment to all villagers.  Another option is targeted treatment,
providing Praziquantal only to those at highest risk.  Local methodologies such as
GPS ditch mapping and geocoded snail surveys and mouse bioassays should be
considered as tools for potentially determining whether the risk in the village is large
or small, widespread or narrowly focused, and how it relates to age groups and
occupations within the village that can be targeted for treatment.

New chemoprophylaxis drugs such as Artemether, work to prevent the
maturation of worms in humans and hence reduce the spread of eggs (Xiao, Booth,
& Tanner, 2000; Xiao et al., 1996).  The problem with artemether is that single
doses are only effective for a short period of time.  For villages where water contact
and the risk of transmission spans the agricultural season, artemether will need to
be constantly readministered to control transmission.  However, in some circum-
stances, we have found villages that primarily grow tobacco, a crop that is only
fertilized two times during the season.  In these locations there is the potential to
interrupt the transmission cycle by chemoprophylaxis during just the period of
fertilization.  If this strategy is effective, then GIS and remote sensing become
important tools for the administration of this promising drug.

Although we have focused on schistosomiasis in China, the topics discussed
in this chapter are generally useful for infectious disease control research within and
outside of China.  Remote sensing has been applied to a variety of infectious
diseases in many different countries (Hay, Packer & Rogers, 1997).  Our
experience in China has shown the importance in recognizing regional differences
in ecology and understanding the spatial scale at which disease transmission factors
operate in the development of remote sensing-based surveillance.  A similar
approach is applicable for comparing and contrasting the geographic distributions
and ecologies of the various Biomphalaria and Bulinus species of snails that serve
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as intermediate hosts for Schistosoma mansoni and Schistosoma haematobium
in sub-Saharan Africa (Brooker & Michael, 2000).  Geographical differences in
disease transmission exist for other diseases, some of which have been studied using
GIS (Mott, Nuttall, Desjeux & Cattand, 1995).  Methods such as GPS ditch
mapping presented in this chapter illustrate the power of GIS and GPS technologies
that make the collection, management and analysis of spatial data easier, and
provide a means for better understanding the relationship between humans and the
vectors that carry disease.
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This study is only the second to use DNA fingerprinting technology in
Maryland to identify fecal coliform sources in order to guide the implementation
of water pollution control practices in a watershed with bacterial impairment.
By combining the use of digital air photos and GPS with GIS, fieldwork is
planned and conducted more efficiently because sample sites can be selected
that accurately represent the physical environment of the study area.  We can
also return to the field and find our sample sites or locate new ones, even in
the remotest part of the study area.  It is also possible to more accurately map
the data directly in the context of its physical environment, greatly increasing
the quality of analysis. The integration of DNA fingerprinting techniques with
GIS shows great promise for extending our capabilities to identify the
controls on water quality and point sources of waterborne health hazards.

INTRODUCTION
Fecal coliform contamination has closed public beaches, reduced shellfish

harvesting and threatened recreational areas across the United States, including the
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Chesapeake Bay watershed.  As in most watersheds, water quality testing currently
performed in Chesapeake Bay waterways does not identify the sources of
contamination (National Shellfish Sanitation Program, 1997; “Water Quality,”
1997a; “Water Quality,” 1997b). Therefore, no pollution control or mitigation
efforts have been undertaken, despite the large adverse economic and social impact
that accompanies this contamination.  However, if a specific pollution source could
be identified, it may be possible to isolate or remove that source.

In this study, we describe the role of Geographic Information Systems (GIS)
in identifying the sources of beach, river and shellfish bed contamination (and
potentially drinking water contamination) by fecal coliform bacteria, specifically
Escherichia coli  (E. coli).  The use of GIS to investigate surface water hydrology
and water quality has become commonplace in environmental analysis (Engel,
Srinivasan & Rewerts, 1993; Fedra, 1993; Hunsaker et al., 1993; Maidment,
1993; Roth & Cyffka, 1999).  This project differs from others because it combines
GIS capabilities in environmental analysis with the new application of DNA
fingerprinting technology to identify the fate, source and transport of fecal coliforms.
This integration of techniques shows great promise for extending our capabilities to
identify the controls on water quality and nonpoint sources of waterborne health
hazards.

Our current research is built upon an earlier successful study using DNA
fingerprinting in Granary Creek, a tributary of the Wye River in Maryland.  The Wye
River project is the first effort in Maryland to use DNA fingerprints to identify
coliform sources (Brohawn et al., 2000; Frana et al., 2000).   The study described
in this chapter is only the second to use DNA fingerprinting technology in Maryland
to identify fecal coliform sources in order to guide the implementation of water
pollution control practices in a watershed with bacterial impairment. The Salisbury
University DNA Fingerprinting Laboratory was the analytical facility for the Wye
investigation, and its personnel participated in the development of field and
laboratory techniques and interpretation of the data.

The project described here expanded the scope of the Wye Project and is one
of the first bacterial source tracking studies to incorporate the use of GIS methods.
Rarely have the powerful capabilities of both GIS and DNA fingerprinting been
combined to study large-scale environmental pollution problems.  DNA fingerprint-
ing for E. coli source identification has been used successfully in a few U.S.
locations over the past several years with an effective pollution control outcome
(Brohawn et al., 2000; Simmons, Herbein & James, 1995; Simmons & Herbein,
1998). The technique is similar to the Pulsed-Field Gel Electrophoresis (PFGE)
protocol utilized by the U.S. Centers for Disease Control and Prevention to identify
hemorrhagic strains of E. coli in human disease outbreaks (Swaminathan et al.,
2001). The DNA fingerprints of E. coli found in water sampled in the field was
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compared with DNA that was derived from known E. coli sources (animal and
human) in order to identify the specific pollution source.  GIS was used to store and
manage the data collected in the field and laboratory so that the spatial patterns of
E. coli can be determined.

The results of this research will provide stakeholders with information and
guidance for regulatory actions and control measures to improve water quality in the
Wicomico River watersheds. Two contrasting study sites that typify the Wicomico
drainage were chosen: 1) a suburban pond with an important public beach,
Schumaker Pond; and 2) an agricultural/forest basin waterway, Shiles Creek, with
a productive shellfish harvesting area located at its mouth  (Figure 1).

Figure 1: Location of study sites in Maryland
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STUDY CONTEXT

E. coli and DNA Fingerprinting
The mode of transmission for several pathogenic organisms is the fecal-oral

route, which includes ingestion of contaminated water.  Testing water for the
existence of all possible pathogens is a lengthy process and highly impractical.  The
intestine is the natural habitat of E. coli, which is a fecal coliform bacterium.  This
organism is found in the feces of all warm-blooded animals, so the presence of E.
coli in water is an indication of fecal contamination and the possible presence of
other organisms, which may be harmful.  Contamination from fecal material
deposited by wildlife and human activity near the shoreline, as well as runoff from
nearby fields, roads and developed properties, is flushed into the water body on the
falling tide or during rain events.

Most strains of E. coli do not cause illness in humans, so this organism is used
mainly as a possible indicator of other pathogenic organisms. The absence or low
levels of E. coli has been used for decades as a superior biological indicator of water
safety for drinking water, bathing beaches and shellfish harvesting areas (World
Health Organization, 1999; National Shellfish Sanitation Program, 1997).

Different “strains” of E. coli inhabit the intestinal tract of different animals.
Furthermore, many, if not most, animal species may carry several distinct strains of
the bacteria in their gut.  Through the use of DNA fingerprinting, it is now possible
to identify the probable source of individual strains of E. coli based on differences
in DNA banding patterns (fingerprints). There is a significant difference between the
fingerprints of human and nonhuman strains of E. coli (Simmons et al., 1995).   The
probable sources of nonhuman E. coli strains can also be identified (at an 80%
confidence level or better) by comparing the DNA banding pattern of an unknown
source from a water sample with the pattern of a known source in the Salisbury
University library of banding patterns.

The Human Impact of E. coli Contamination
Within the Chesapeake Bay watershed, the Lower Wicomico River and the

Wicomico River Headwaters Watersheds of Maryland’s Eastern Shore have been
classified as watersheds in need of restoration under the Maryland Clean Water
Action Plan that was set in motion in 1998 by the Federal Clean Water Action Plan
(Clean Water Action Plan Technical Workgroup, 1998).  Shellfish beds in the
Wicomico are monitored by the Maryland Department of the Environment and
have been contaminated for the past several years due to fecal coliform bacteria.
A few growers still lease oyster beds in the river but must relocate the oysters, at
some expense, to other uncontaminated areas prior to harvest to undergo complete
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purging of bacterial contamination.  As importantly, low-income families use fish
and shellfish from the river as a food supplement.

In addition, more than a half-dozen boat launches on the river are an indication
of the large number of recreational fishermen.   For public health considerations,
formal swimming waters in the river are tested on a regular basis.  These beaches
have been closed for several years due to fecal coliform bacteria levels. Several
more informal (but very real) swimming areas are not tested, but can be assumed
to experience bacterial contamination as well.  Again, the source(s) of the coliform
bacteria polluting the river is unknown.

STUDY AREAS
The majority of the Wicomico sub-watersheds are almost entirely rural

consisting mainly of agricultural land, forest and tidal marsh. A few streams have
experienced outbreaks of the toxic organism, Pfiesteria piscicida, suggesting that
there is already potential ecological disturbance (Burkholder, Mallin, & Glasgow,
1999; Kane et al., 2000). To compound the problem, there is tremendous
development pressure in these watersheds. Population increased by more than
15% from 1980 to 1990, and growth is continuing.  These new residents expand
the need for parks and swimming areas.  The city of Salisbury, the largest urban
center in the region, has a plan to link together streams along the Wicomico River
and its major tributaries to form green belts.  Many tributaries, such as Beaver Dam
Creek, include several colonial-era millponds. Suburban development pressure
around these ponds is intense.  Many developments also have small lots with on-
site sewer disposal. Without identification and control of the bacterial contamina-
tion, residents will be limited in or excluded from use of waters in the Wicomico
River watersheds.

The first study area, Shiles Creek, represents the typical rural land use/land
cover in the Wicomico region. Shiles Creek is at the southern end of the Wicomico
watershed near the mouth of the river (Figure 2). It is a tidal creek that empties
directly into the river near several shellfish beds that have tested positive for elevated
levels of E. coli. Our sampling area stretches along two miles of the creek near its
headwaters including the major tributaries forming its source. The land cover is
dominated by agricultural lands with poultry growing operations and large tracts of
riparian forest interspersed with extensive tidal marsh.  Most major streams have
some tidal marsh along their edges.

Our second study area, Schumaker Pond, represents the effect of urbanization
on E. coli pollution (Figure 3). The pond is a 50-acre impoundment of Beaver Dam
Creek, which is part of a major recreation greenbelt stretching through the city of
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Figure 2: Sample sites on Shiles Creek: An agricultural/forested watershed
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Salisbury.   Surrounding the pond is a mix of new and old residential uses; some have
on-site effluent disposal and some are on the sanitary sewer line.  There is also
intensive institutional development, including a high school and a museum. Along the
western shore, there was a popular swimming area that had been a favorite of the
county children. Unfortunately, the area has been closed for approximately six years
due to high levels of E. coli.   At first, the pond was closed only for part of the
summer, but in the last few years the closure has been made permanent, indicating
that over time E. coli levels are increasing. The pond is also heavily fished.
Residential lots continue to be developed in the watershed as well as on the pond
because of the popularity of living on the water.

METHODS

In The Field
Water samples were collected from tributaries of Shiles Creek and from

rivulets and culverts draining into Schumaker Pond.  Each sample, consisting of one
hundred milliliters (ml) of water, was collected and transferred to a sterile collection
bottle.  Each water sample was analyzed for five environmental variables in the field:
temperature, salinity, dissolved oxygen, pH, and conductivity.  Additionally, the

Figure 3: Sample sites on Shumaker Pond: A suburbanizing pond
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location coordinates (latitude and longitude) for each sample were obtained using
a mapping-grade Global Positioning System (GPS) receiver that has a resolution
of 1 meter or less (Trimble Pro XRS).   At the same time, the wind, sky conditions
and precipitation timing were noted.  All of this information, together with position
locations, were recorded and stored in the GPS data logger.  The water samples
were then transported to the Salisbury University DNA Laboratory for analysis. In
the GIS lab, these data were downloaded from the GPS in a format compatible for
use with the desktop GIS, ArcView.

Samples of fecal matter were also collected and transported in sterile
collection containers to the laboratory for analysis (Murie, 1974; Rezendes, 1999).
For each identifiable scat sample, the GPS location and the name of the animal
species were recorded as well.  Water samples were collected routinely. Scat
samples were collected throughout the study period and especially while conduct-
ing intensive fieldwork on selected sites within each study area.

In the Laboratory
The presence and intensity of E. coli contamination in water were measured

by counting the density of bacteria in a sample using a modification of the Most
Probable Number of colony-forming units (MPN) analysis, “Fecal Coliform
Procedure (A-1 Medium), Method 9221 E. 2,” from Standard Methods for the
Examination of Water and Wastewater (APHA; AWWA; WPCF, 1995).
DNA fingerprint analysis was conducted on both water samples and scat samples.
The laboratory protocol for conducting DNA fingerprinting is lengthy and is beyond
the scope of this chapter.

After processing, DNA banding patterns are checked against a library of
known banding patterns.   Each new scat DNA banding pattern is added to the SU
Fingerprint Library. Expanding the DNA library is an important goal because the
results of this and future studies of E. coli pollution are highly dependent on library
size. The DNA library is the standard used for matching DNA patterns from water
samples with the DNA patterns for specific sources.  The SU Library currently
contains over 900 banding patterns of E. coli strains known to have come from
specific animal species (e.g., deer, cattle, goose, raccoon), including humans.  A
successful match means a positive identification of the source of E. coli in the water.
By increasing the size of the library, the ability to match DNA from water samples
and identify the sources of E. coli will be greatly expanded.

GIS METHODS
The GIS was essential to this investigation because this software is specifically

designed to integrate database operations with geographic analysis (Burrough &
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McDonnell, 1998).  A fundamental use of GIS in this study was to record, store,
manage and analyze field data for both the Shiles and Schumaker study areas. GIS
served as the primary data control center.  Data recorded in the field and laboratory
were stored in the GIS as a relational database, making them available for both
statistical analysis and geographic analysis.  Along with standard querying of this
database to determine the nature of the data, a suite of descriptive statistics was run
on the MPN data and associated variables.  It was possible to run statistical
analyses by exporting these data to spread sheets and a statistical package. The
water chemistry variables were analyzed using parametric statistics (Minitab,
2000), but have not yet been analyzed using GIS.

Geographic analysis focused on mapping MPN data and water quality
measurements on base maps consisting of air photo images of the study areas. The
air photos used are digital orthophoto quarter quadrangles (DOQQs), which are
high quality, infrared images with a scale of one inch equals 1,000 feet.  At this scale,
the resolution of land use/land cover is fairly detailed, making it possible not only to
interpret major features such as forest type, wetlands, etc., but also minor features
such as individual chicken houses and drainage ditches, even in wooded areas.
Successive runs of data analyses on the MPN were mapped on the DOQQ,
allowing us to relate patterns of E. coli levels to the physical environment in which
the sample was located.  The ability to iteratively test data while examining and
comparing the resulting spatial patterns is unique to GIS.

Sampling
Perhaps most importantly, GIS was critical in mapping and evaluating field and

lab results, permitting us to better manage our field-sampling scheme.  Although the
study areas appear small in area, there are an overwhelming number of potential
sites to sample once in the field. The GIS allowed us to more precisely define the
physical environment that we needed to study in depth.  GIS permits us to make the
selections that yield meaningful information about the main sources of nonpoint
source pollution in these waters, allowing us to focus sampling on specific source
areas of E. coli.

Our initial sampling plan for E. coli MPN counts involved selecting sites that
represent the physical geography of the study areas.  We could identify these sites
because the DOQQs provided a detailed picture of the study area from which to
choose sample sites that reflect the variations in ecology and land use of the source
regions for E. coli-laden water.  In both study areas, these sites were sampled on
a monthly basis. This routine sampling was important in determining the temporal
and spatial pattern of E. coli concentrations as they change throughout the year.
Also, by mapping the locations of the raw MPN counts on the DOQQ, we were
able to evaluate which physical environments contained streams whose source
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areas were major contributors to MPN levels.
Determining the sources of E. coli required an additional sampling strategy,

which was also very much supported by GIS. While most water sampling was
routine, given the amount of fieldwork and especially laboratory work involved in
obtaining even a single DNA result, we were forced to be very careful in selecting
which areas to sample for DNA fingerprinting.  Almost all streams in the Chesa-
peake Bay watershed contain at least a low level of bacterial contamination.  Thus,
we directed water sampling for DNA fingerprint analysis to streams and rivulets
from source areas that were the greatest contributors of contamination to the pond
or tributary.

Using the GIS mapping capabilities, we were able to determine which of the
initial sample sites consistently had the greatest concentrations of E. coli.  The
streams and rivulets in these source regions were singled out for more intensive
water sampling because they are major contributors of E. coli and may reflect the
major animal sources of bacterial pollution in the study area.  Most of the scat
samples were also collected from these source areas to determine which animals
were contributing to contamination in that locale.  By continually refining the
analyses of MPN values, the area of sampling was gradually decreased and more
individual rivulets sampled in that area.  A source region was more precisely
delimited in this way, increasing the potential for identifying the specific sources of
pollution in that particular physical setting.

In Shiles Creek, the use of GPS in conjunction with GIS was critical to
obtaining location positions for making repeated observations at specific sites.
Some of these sites consisted of tiny rivulets in a fairly extensive area of marsh that
has few distinguishing physical features to use as landmarks.   Sampling in densely
wooded areas created a similar problem of locating sites and obtaining mapping
positions.  Using the GPS helped solve this problem by continually giving range and
bearing instructions to the sampling team, allowing them to navigate directly to
previous sample locations.

To test the accuracy of our GPS observations, the sample sites were mapped
and overlaid on the DOQQ.  Each sample site location was then compared to its
previously recorded location on the map to insure that the same sites had been
sampled and that their positions were correctly recorded.  Often, it was necessary
to zoom or enlarge portions of the photo to make these comparisons. The
magnification of a digital computer image of an air photo, compared to using an
optical device and a hard copy air photo, results in much greater control of the image
and greatly increases the ability to interpret details of the physical environment that
the image represents. Some error tolerance in location position was accepted to
account for the fact that the GPS was in the aft of a 16 foot canoe whose angle in
relation to the shoreline could vary.  Any major discrepancies in position were
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resolved by further GPS field observations. The locations of new sample sites were
established by GPS and verified by additional GPS observations on later field
collection trips.

GIS ANALYSIS
To determine which sites and their source regions were major contributors of

E. coli, we made use of the database analysis capabilities of the GIS.   Not
surprisingly, the results of MPN data analysis revealed that MPN values varied
widely between sites, as well as from one field collection trip to another.  MPN
values fluctuate with the weather, the chemistry of the water, and the movement and
habits of animals, both temporally and seasonally.  The temporal variations in MPN
values in some smaller source regions were particularly high and data variance large.
Therefore, we analyzed E. coli by ranking each site by MPN values for each field
collection trip.   Moreover, in an effort to insure consistency, sites were ranked using
different criteria, including ranking all sites by mean MPN, highest MPN, MPN >
200 and MPN > 500.  MPN counts over 200 result in beach closings.

The results of each rank order analysis were mapped; each site was mapped
by their rank for each set of ranking criteria.  The results of the ranking analysis were
then overlaid on the DOQQ, using different map symbolization to represent the
different rank analysis.   This technique allowed us to compare results of the different
rank order analyses.  The sites that were consistently most highly ranked in two or
more ranking procedures were considered candidates for further field investigation,
including additional scat and water sampling.

The results of the MPN ranking of sites in Shiles Creek suggest that small
streams flowing from wooded area are more important contributors of E. coli  (e.g.,
Figure 2 sample site 7.5).  Field observations in these areas reveal that there is
significant evidence of wildlife, including widespread occurrences of animal scat.  In
Schumaker Pond, the results are more difficult to interpret, but they seem to suggest
that runoff carried across large paved surfaces and into storm water culverts to the
pond may be an important source of E. coli.  Although sometimes the relationship
between E. coli counts and animal activity is evident; for example--we have
seen animal tracks (e.g., raccoon) right next to sample sites that had fairly high
E. coli counts--it may be that in Schumaker Pond, E. coli levels are a function
of both runoff from paved areas and direct input by animals. However, there
is still several more months of sampling to be completed. Additional sampling
in the remaining months of the field investigation phase of this study is necessary
to verify these findings.
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GIS AND DNA MATCHING
Another important use of GIS was the mapping of results of DNA fingerprint-

ing.  Some of the more highly ranked sample sites were further investigated by
sampling for water and scat to develop DNA matches.  However, our research is
still in its early stages, as far as DNA fingerprinting analysis of the collected water
and scat are concerned.  While we have had some successful matches of E. coli
in water samples to specific animal species, too few samples collected have been
through the complete analytical process to make any firm conclusions as to the
major or dominant sources in each of the study areas.

No single match of DNA from water to a specific animal source is sufficient
to draw conclusions as to the major pollution sources, but our past experience
indicates that continued fieldwork and laboratory analysis over the study period
should yield a sufficient number of matches to allow the probable sources of the E.
coli pollution to be identified.  GIS analysis will help to explain the location and areas
that are the source of the E. coli.  Furthermore, this research will continue to track
the seasonal and temporal factors that help control the spatial pattern of E. coli
concentrations.  From such an effort, it is hoped that an effective policy can be
formed to help mitigate the pollution problem.

CONCLUSIONS
This investigation is one of the first to apply PFGE technology and GIS

methods to identify the sources of nonpoint source E. coli water contamination
prior to a disease outbreak.  GIS is an extremely valuable tool in managing the field
component of the project.  By combining the use of digital air photos and GPS with
GIS, fieldwork is planned and conducted much more efficiently because it is
possible to choose sample sites that better represent the physical environment of the
study area.  We can also return to the field and find our sample sites or locate new
ones, even in the remotest part of the study area.  It is also possible to more
accurately map the data directly in the context of its physical environment, greatly
increasing the quality of analysis.  The researcher is no longer limited to field
observations of the small area that can be seen surrounding the site or to
approximating site locations of data on a map produced for some other purposes.
We can directly locate the site and determine physical features characterizing the
surrounding area.

Our preliminary work also suggests that the GIS is necessary to conduct spatial
analysis because it is possible to iteratively map and explore spatial data in varying
ways.  Because of the variance in MPN data, we used this capability to determine
the sites and physical environments that are the major contributors of E. coli.
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Comparing maps to determine spatial patterns is certainly not a new technique, but
GIS greatly facilitates its operation. While statistical packages and spreadsheets are
commonly used for analysis, they are not directly designed to map the output of
analysis.  GIS integrates both capabilities, such as making maps of the rank ordering
of the MPN levels.  Just as it is common in a spreadsheet to recalculate data to
examine patterns in many different ways, GIS was designed to analyze data
iteratively.  Unlike spreadsheets, GIS can also map the results of these efforts.

We have just begun to analyze the MPN data in order to determine the spatial
pattern of its sources.  It does seem, however, that on rural tidal creeks, forested
areas are major sources of E. coli pollution of water.  Forests are, of course, natural
places for wildlife to concentrate. However, other physical environments need to
be more fully examined to understand their role in bacterial contamination, if any.
It does appear that in urban environments there are other sets of controls on E. coli
concentrations.  By combining GIS and DNA fingerprinting, our method of
bacterial source tracking may offer significant public health benefits in areas of
wildlife contamination control or where human and wildlife E. coli strains need to
be differentiated.
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This chapter describes the use of geographic information systems to
predict spatial risk of child survival problems in a rural area of Bangladesh.
Demographic, health service and socioeconomic surveillance data linked
with a geographic information system from the rural area were used to
predict the risk of gender-specific child mortality. Temporal data from the
area show that child mortality rates have declined, and that gender differences
in mortality have been eliminated. However, results of the higher mortality
area analysis show that this decline has not been consistent in all areas. A wide
geographical variation of mortality exists within the area as well. In general,
places that had no intensive child health intervention, no outside embankment
and were distant from a treatment center predicted a higher risk for child
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mortality. An area with Hindu predominance predicted risk for only female
child mortality. The results of the analysis suggest that, with socioeconomic
and cultural interventions, spatial variations in child mortality can be
minimized.

INTRODUCTION
The global reduction of child mortality has been a priority of international and

national organizations for the last few decades. The Health for All by the year 2000
goal set at Alma Ata called for the equitable distribution of health services to all
children, transcending geographical boundaries.  Despite widespread global efforts
to improve child survival, the latest UNICEF report on the State of the World’s
Children 2000 (UNICEF, 2000) indicates that child mortality rates continue to
remain higher in Lesser Developed Countries (LDCs), and in some areas, girls
continue to die at a greater rate than boys.

Demographic surveillance data from Matlab, a rural area of Bangladesh,
indicate that the mortality rates of the children (aged 1-4 years) in the area have
declined greatly in the last two decades (Figure 1). The rates have also declined in
other rural areas across the country (BBS, 1987, 1998), though a lesser extent than
in Matlab.  In Matlab, the mortality rates declined by 56% for boys and 69% for
girls from 1985 to 1995, as compared to a decline of 16% for boys and 24% for
girls in other rural areas nationwide. The gender mortality differential that was
notoriously high in Matlab in the 1980s virtually disappeared by the mid-1990s. The
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larger decline of mortality in Matlab can be perhaps attributed to child health
intervention programs that have been operating in a part of the area since 1982
(Fauveau, 1994).

Despite the large decline and elimination of gender disparity in child mortality,
spatial variations in mortality continue to exist in Matlab (Ali et al., 2001a). This
variation most likely exists in the rest of Bangladesh, as well as in other Less
Developed Countries (LDCs). Previous studies have attributed this variation to a
variety of social, environmental, and health care factors (Ali et al., 2001a; Rahman
et al., 1982, 1993). A multitude of social, demographic, economic, and environ-
mental factors has been identified as contributing to the gender differential of child
mortality in Bangladesh (Chen et al., 1980; Koenig & D’Souza, 1986; Basu, 1989;
Islam & Ataharul, 1989; Bhuiya & Streatfield, 1991; Fauveau et al., 1991; Salway
& Nasim, 1994; Muhuri, 1995; Muhuri & Menken, 1997; Bairagi et al., 1999).

In both demographic and epidemiological transition theory, mortality decline
has been attributed to modernization (Chesnais, 1992; Omran, 1971). Moderniza-
tion encompasses economic, political, social and cultural changes in society (den
Bosch et al, 2001), which may change the life style of the people and that influences
their health. Since adaptation of an innovation varies across societies in Bangladesh,
the modernization process must be varying spatially, and that may contribute to vary
mortality decline from one place to another.

Individuals in real life do not exist in isolation, rather they live as the members
of a society. This society is usually formed by a group of people living close to each
other. Munshi (1996) argues that people learn from their neighbors, and that
behavioral practices of individual households are influenced by them (Twigg et al.,
2000). Addressing such a human environment is greatly limited by the analytical
tools available. The lack of an effective geocomputational environment and
algorithms hindered the development of spatial analysis techniques in this area
(Kwan, 2000). As a result of these constraints, unrealistic assumptions about
human behavior and their environment were often made, and the methods used to
operationalize the theoretical constructs were limited. Complexities arise also
because of the uneven distribution of physical facilities, differences in the speed of
movement in different areas and the effect of communication networks.

Health is also related to complex systems of interaction among environment,
population and cultural behavior (Meade, 1988). Geographic information systems
(GIS), by identifying people’s residence, their cultural, social, and physical
environment, can address the complex systems of interaction among those compo-
nents. Spatial distribution of physical facilities, people and their cultural and
socioeconomic conditions can now be modeled by creating natural boundaries of
the phenomena with in a GIS. GIS has been shown as a useful tool for public health
research and application, particularly in disciplines that can benefit from envisioning
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a spatial component, or the correlation of two or more spatial variables. It can help
describe spatial variations of health and their covariation with environmental factors
and health care systems (Loslier, 1998; Wilkinson, et al., 1998; Anderson &
Skrizhevskaya, 1996).

The chapter focuses on identifying the components creating spatial, i.e.,
environmental, risks for health, in particular gender-specific child mortality in a rural
area of Bangladesh. The data are viewed from a geographical perspective, and
natural boundaries of the phenomena are defined as models of environmentl entities.

DATA AND METHODS

The Study Area and the GIS
The study was conducted at the International Centre for Diarrheal Disease

Research, Bangladesh’s (ICDDR,B) field research site at Matlab, a rural area of
Bangladesh located 54 km southeast of the capital city, Dhaka. The study area is
comprised of 142 villages and covers 184 km2.  The Dhonagada River intersects
the study area, dividing it into nearly equal portions.  In the 1980s, an embankment
was commissioned alongside the main river to allow year-round agricultural
activities and to provide flood protection for local communities.  Since the initiation
of ICDDR,B activities in 1963, a variety of health intervention programs have been
undertaken in the research site. Detailed descriptions of the area and the interven-
tion programs have been provided elsewhere (Fauveau, 1994). The intervention
programs, in most cases, have been conducted in one-half of the area (intervention
area); thus providing comparative figures of health status between intervention and
non-intervention (comparison) areas.  In the study area, a hospital and four
community-based health centers (subcenters) are being operated as the part of the
ICDDR,B program.

For the last three decades, a demographic surveillance system (DSS) has
recorded all vital demographic events of the study area population.  The population
of the area is about 200,000, and the population density is approximately 1,100
people per square kilometer. The people live in clusters of patrilineally related
households called baris.  The average number of households in a bari is six in which
approximately 30 people live. Approximately 85 percent of the population is
Muslim and most others are Hindu.

In 1994, a GIS was implemented integrating the DSS components within the
frame of its information systems. Figure 2 shows the geographic features of the study
area. The detailed descriptions of implementing the health-based GIS are given
elsewhere (Ali et al., 2001b). A unique feature of the GIS is the bari level
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information, which allows investigating local level spatial variability of health and
environmental phenomena of the study area. Both vector and raster formatted data
structures are maintained in the GIS allowing a wide spectrum of spatial analysis.
This study acquired data on population, mortality and socioeconomic status from
the DSS and spatial data from the GIS.

Figure 2: The Matlab study area, Bangladesh
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Study Periods
Two time-periods, 1984-86 and 1994-96, were chosen to develop the model

of spatial risk for gender-specific child mortality of the Matlab. For younger children
biological factors tend to figure more prominently in gender-specific mortality rates
(Islam & Ataharul, 1989). Three-year periods were selected to avoid temporal bias
in the mortality rate on space.  The age group 1-4 years was chosen as an indicator
of the conditions of a child’s environment.  It is assumed that after one year of age,
survival is greatly influenced by socio-environmental variables such as education,
population density, socioeconomic status, access to health services and biophysical
features.

Raster GIS Data
The study used raster GIS technology to exploit exploratory spatial data

analysis technique as the methodological tools of this research questions. Within the
raster GIS, the spatial resolution of the pixels was set to 30 meters to represent a
bari in a single pixel. A total of 7,691 pixels of baris were implemented in the GIS.
Within the raster system, each data set, such as population, mortality, educational
status, etc., was interpreted in an image, and the data became the attribute of the
pixels.

BOUNDARY MAPS OF HEALTH AND
ENVIRONMENT

Health Maps (Dependent Variables)
A kernel estimation procedure described elsewhere (Bailey & Gatrell, 1995;

Gatrell et al., 1996) was used to compute intensity of deaths for each point of
measurement (baris). Unlike the method described in those literatures, this study
used a spatial filtering technique within a raster GIS environment (Ali et al., 2002)
to compute the intensity. Since the occurrence of health events depends on the size
of population at risk, the intensity of deaths at a target point is adjusted by the size
of population (close to 35 persons) by choosing varying sized neighborhoods from
3×3-pixel to 21×21-pixel windows.

The data on estimated intensity of deaths for the point of baris were then used
to interpolate spatially smoothed surface of mortality by using the kriging method
(Oliver & Webster, 1990). In kriging, the variable that is being interpolated, Z, at
a point x0 is:
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where, Z(xi) is the observed data value at points i, δi is the weight associated with
the data at point i, which is obtained from a linear predictor. Kriging uses a
variogram model for interpolation of data. The underlying assumption of the
variogram model is that two observations close together are more similar than two
observations further apart. The closer a data point is to a measured point, the more
weight it carries. The sum of the weighting factors used to calculate the value is 1.

While kriging, the grid cell size chosen was 150, thus data was interpolated at
the interval of 150 meters. We then used contour mapping technique to obtain one-

Figure 3: Cross-classification image of the high risk areas of mortality for
boys with the periods 1984-86 and 1994-96, Matlab Study Area

Inside
Embankment
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fourth of the highest peaked surface, and the surface was defined as the higher
mortality area. The surfaces of higher mortality area were obtained for both boys
and girls and for the two time periods. Figures 3 and 4 show cross-classification of
temporal maps of higher mortality area for boys and girls respectively.

From each of the cross-classification maps of higher mortality, four Boolean
(binary) maps were created: i) risk area remains risk area, ii) risk area changed to
non-risk area, iii) non-risk area changed to risk area and iv) non-risk area remains
non-risk area.  The area of interest was assigned the value of “1”; otherwise the
assigned value was “0.”  The spatial logistic regression model requires that the
dependent variable be employed as a probability image. A surrogate method
(Eastman, 1999) using a spatial filter of window size of 7×7 - pixels was used to

Inside
Embankment

Figure 4: Cross-classification image of the high risk areas of mortality for
girls with the periods 1984-86 and 1994-96, Matlab study area
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obtain the probability images. It was assumed that the size of this window would give
enough variation in the surrounding areas of a pixel of the study area.

Environment Maps (Independent Variables)
The map of high education areas was created using spatial filtering. A constant

size of window (7×7 - pixels) was chosen for the filtering, because it was assumed
there would be no influence from neighbors after a certain distance. It was also
assumed that neighbors’ influence would diminish as distance increases; therefore,
a distance decay function (e-spatial lag) was used in computing it. Proportion of
educated (at least four years of secular education) persons living in a bari was used.
The method yielded a higher education for the baris that are surrounded by more

Figure 5: Map showing area of higher level of education in Matlab, 1996
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educated neighbors. An edge correction term (proportion of window celling falls
inside the study area) was used to remove boundary effect in the data. Using kriging
and then a contour algorithm, the surface of educational status was created from
which the highest elevated quarter was defined as the higher educated area. Figure
5 shows the map of higher educated areas in 1996. Similarly, higher population
density and higher fertility (based on general fertility) maps were created. The
population density was represented in per square kilometer dividing cumulated total
of the people within the window by the size of window area (0.0441 km2).

Socioeconomic maps were created with the major occupations, such as
agriculture, fishing and business. Figure 6 shows the area of predominant agriculture
in 1982. Using cross-classification of the maps of major occupations, seven maps

Figure 6: Map showing area of predominant agriculturist in Matlab, 1982



Spatial Modeling of Risk Factors for Gender-Specific Child Mortality   233

of all possible combinations were created. The cultural map was created identifying
the Hindu predominant areas. The map (Figure 7) shows the Hindu communities live
along the main river, as fishing is their predominant profession.

All maps were described in binary (Boolean) category. The binary maps were
used to create distance surfaces from the islands (elevated quarter surface) of the
phenomena. In the distance surface, the closer a pixel is to the island, the smaller
the attribute value of the pixel is; the pixels fall in the islands was attributed to "0."
A binary image was created for embankment attributing the pixels outside the
embankment as “1,” and “0” otherwise. Similarly, the comparison area (non-
intervention area) and intervention area were described by “1” and “0” respectively.
The map of accessibility to heathcare was the cost distance (in time) to the nearest

Figure 7: Map showing Hindu predominant area in Matlab, 1996



234   Ali, Ashley, Haq & Streatfield

treatment center (TC). In computing the cost distance, river and canals were treated
barriers, and accounted their cost (time) five times higher than that of the ground.

Analytical Methods
Logistic regression was employed to determine predictive risk factors for

gender-specific child mortality. The regression model takes the form:
logit(p)=ln(p/1-p)=a+b1x1+b2x2+……+bnxn

where p is the dependent variable expressing the probability of the outcomes, which
are  a) risk area remained risk area (R-R), b) risk area changed to non-risk area
(R-N), c) non-risk area changed to risk area (N-R), and d) non-risk area remained
non-risk area (N-N). The kappa statistic was also used to ascertain the agreement
in the risk areas of mortality between boys and girls.

RESULTS
The thresholds to define higher mortality areas for boys and girls are given in

Table 1.  The cross-classification of higher mortality areas between boys and girls
reveals poor agreement for both the time-periods (kappa statistic <0.20). In
Matlab, the majority of the deaths were associated with infectious diseases: in 1985,
43% of the total child deaths were attributed to diarrhea, 14% to measles, and 4%
to respiratory diseases. In 1995, approximately 33% of the deaths were attributed
to diarrhea and 11% were due to respiratory diseases. Drowning was also one of
the major causes of child deaths in both the periods, which was also reported
elsewhere (Myaux et al., 1996; Ahmed et al., 1999).

The regression was done in two steps. In the first step, the simple logistic
regression was used, and the factors showing a minimum of 2% variation in
explaining spatial risk for gender-specific mortality were used in a multiple logistic
regression in the second step. The results of the multiple logistic regression show that
the combined effects of the factors explain 11% of the total variations in predicting
N-R for male child (Table 2). Being in an area outside an embankment is the most
important factor in predicting risk for male child mortality followed by areas of
multiple groups of professionals. A high fertility rate also predicts spatial risk for

Gender 1984-86 1994-1996 
Male 30.4 9.0 
Female 41.4 10.5 
 

Table 1: Thresholds (deaths/1,000 children) for defining high risk areas of
child mortality
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male child mortality. Areas of higher population density show the lowest spatial risk
among the factors. On the other hand, the same factors do not predict much (only
3% of total variations) in explaining N-N.

Since the spatial regression yielded no direction of relationship (positive or
negative), a logistic regression was done outside the GIS environment using the bari
level data to understand the direction of relationship. The results of the analysis
reveal that baris in the area of multiple groups of professionals, higher educational
level, comparison area, cost distance to TC and outside embankment have a
positive relationship with N-R.  In contrast, fertility, population density and Hindu
community show a negative relationship with N-R. Since no variables predicted N-
N, the bari level analysis was not employed for it.

The results of the analysis for predicting R-R and R-N of male child are
presented in Table 3. In the table, the model R-R shows that the comparison area
predicts higher spatial risk for male child mortality. The effect of an embankment in
predicting spatial risk is also significant. The distance to treatment centers and areas
dominated by multiple groups of professionals also influence risk areas to remain
risk areas.  Overall, the combined effect of the variables explains 16% of the total
variation for male child mortality. Table 3 also shows that the factors included in
predicting R-R do not predict R-N. According to the bari level data, all the factors
included in the model, such as multiple groups of professionals, comparison area,
outside embankment and the cost distance to TC, show a positive relationship with
the R-R.

The results of regression analysis for N-R and N-N of female child mortality
are given in Table 4. In this case, the combined effect of the factors explains 10%
of the total variations in predicting N-R. The comparison area predicts the highest
risk among all factors of mortality included in the model followed by embankment

Table 2: Results of the multiple logistic regression (spatial) of the male child
mortality. Models: Non-risk area changed to risk area (N-R) and non-risk
remains non-risk area (N-N)

Model: Non-risk to Risk (N-R) Model: Non-risk to Non-risk (N-N) Variables 
Regression 
coefficient 

t-test Regression 
coefficient 

t-test 

Intercept    -3.817858 -250.14736 2.690645 166.0446 
multiple groups of professionals     0.000090 39.580791 -0.000058 -26.80997 
high educational status    0.000362 18.031919 -0.000044 -2.516286 
high fertility  0.000106 10.347898 0.000123 13.851040 
comparison area    0.170880 17.679539 -0.058213 -6.269722 
outside embankment    0.469618 51.742344 -0.306266 -35.09447 
cost distance to TC    0.001229 21.177443 -0.000528 -9.392699 
high density of population     0.009980 1.036064 0.054325 5.873418 
Hindu dominance  0.001021 17.087276 -0.000358 -6.205904 

Adjusted R2 0.114470 0.034517 
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and then cost distance to the TC. However, modeling N-N with these factors has
little impact on the outcome. The bari level data indicate that educational status,
comparison area, outside embankment, cost distance to TC, population density
and Hindu community have a positive relationship, while baris located in multiple
groups of professionals and in high fertility areas have a negative relationship while
predicting N-R.

Table 5 presents the results of the analysis of R-R and R-N for female child.
Of the factors, the comparison area influences the highest mortality followed by
multiple groups of professionals and embankment in predicting R-R. Educational
status, distance to the TC and Hindu community explains 19% of the total variations

Model: Risk to Risk (R-R) Model: Risk to Non-risk (R-N) Variables 
Regression 
coefficient 

t-test Regression 
coefficient 

t-test 

Intercept    -4.086931 -178.4538 2.057620 71.24044 
multiple groups of professionals      0.000044 12.188567 -0.000017 -5.028326 
comparison area    0.808863 50.562550 -0.233676 -16.77735 
outside embankment    0.382884 26.844124 -0.115347 -8.904040 
cost distance to TC    0.001489 16.102747 0.000166 1.993834 

Adjusted R2 0.162250 0.012257 
 

Model: Non-risk to Risk (N-R) Model: Non-risk to Non-risk (N-N) Variables 
Regression 
coefficient 

t-test Regression 
coefficient 

t-test 

Intercept    -3.753035 -240.24765 2.534480 153.52201 
multiple groups of professionals        0.000050 20.524385 -0.000021 -9.178230 
high educational status    0.000396 20.178802 -0.000223 -12.881060 
high fertility  0.000060 5.703178 0.000164 18.772718 
comparison area    0.369911 38.578598 -0.190321 -20.605009 
outside embankment    0.306635 32.521801 -0.114156 -12.863127 
cost distance to TC    0.001503 25.077888 -0.000688 -12.130284 
high density of population    0.216925 21.126863 -0.117856 -12.287079 
Hindu dominance         0.001357 21.803726 -0.000698 -11.900236 

Adjusted R2 0.101230 0.028542 
 

Table 3: Results of multiple logistic regression (spatial) of the male child
mortality. Models: Risk area remains risk area (R-R) and risk area changed
to non-risk area (R-N)

Table 4: Results of multiple logistic regression (spatial) for female child
mortality. Models: Non-risk area changed to risk area (N-R) and non-risk
remains risk area (N-N)
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in predicting R-R for girls. However, these factors did not show any influence in
predicting R-N. According to the bari level data, multiple groups of professionals,
educational status, comparison area, outside embankment and cost distance to TC
have a positive relationship, while Hindu predominance has a negative relationship
with the R-R.

DISCUSSIONS AND CONCLUSIONS
By modeling spatial risk for gender-specific child mortality, we identified

several predictors for this rural area of Bangladesh.  The cross-classification
analysis of temporal data on higher mortality areas shows that, although the mortality
rates have declined over time, they have not declined consistently over the entire
study area. About 25% of the areas that experienced lower child mortality in the
1980s shifted to higher mortality areas in the 1990s. On the other hand, a major part
of the higher mortality area of the 1980s became lower mortality areas in the 1990s.
The shift of one type to another type of mortality area resulted in the wide
geographical variation of mortality in Matlab. The cross-classification of gender-
specific mortality maps also indicates significant spatial variability in mortality
between boys and girls. The variability implies that human environmental processes
of mortality for boys and girls are not the same.

The comparison areas where no intensive intervention was carried out, areas
outside an embankment, areas distant from a treatment center and the areas
predominated by multiple groups of professionals predict a higher risk for male child
mortality for both the models (N-R and R-R). The results are somewhat similar to

Model: Risk to Risk (R-R) Model: Risk to Non-risk (R-N) Variables 
Regression 
coefficient 

t-test Regression 
coefficient 

t-test 

Intercept    -4.393467 -194.85032 2.253702 75.933701 
multiple groups of professionals 0.000100 31.636171 -0.000045 -14.123897 
high educational status    0.000302 10.860458 0.000152 6.076112 
comparison area    0.555219 40.760643 -0.186226 -14.012320 
outside embankment    0.243221 20.090242 -0.064532 -5.284036 
cost distance to TC    0.001201 13.869790 -0.000286 -3.372448 
Hindu dominance         0.001133 12.658359 -0.000239 -2.746511 

Adjusted R2 0.191666 0.019756 
 

Table 5: Results of multiple logistic regression (spatial) for female child
mortality. Models: Risk area remains risk area (R-R) and risk area changed
to non-risk area (R-N)



238   Ali, Ashley, Haq & Streatfield

previous studies (Myaux et al., 1997; Rahman et al., 1982). Areas of higher
educational status, lower fertility level, lower population density and non-Hindu
areas predict spatial risk for male child mortality when modeling N-R.

The positive association of the areas of higher educational status with higher
male child mortality indicates that neighbors’ education status did not play any role
in declining mortality to the extent that was anticipated. It suggests that education
may not be a good predictor of mortality reduction, as it did not influence the
outcome when modeling mortality with R-R. Similarly, areas of higher fertility show
a negative association with higher mortality when modeling N-R, but do not show
any significant influence on mortality when modeling R-R for male children. The
lower mortality in Hindu-dominance area is perhaps related to their settlement
pattern near the main river, which facilitates them year-round easy access to
treatment centers by their own boats. However, further study is required for a better
understanding of the relationships between distance to treatment centers and
mortality rates.

When predicting R-R and N-R for female children, areas of higher educational
status, the comparison area of no intensive intervention, being outside an embank-
ment and greater distance to a TC were the common factors for higher mortality.
Areas with multiple groups of professionals show a contrasting picture in predicting
mortality when modeling the data with N-R and R-R for female. Predicting areas
of mortality with the N-R model, the Hindu community shows a negative association
for males and a positive association for female child mortality indicating a gender
bias in seeking health care services. According to Hindu laws, the daughters cannot
inherit their father’s property—thus causes dowry systems existing during marriage.
In many instances, the parents of the bride have to sell their assets to get the dowry
demanded by the groom’s family. Thus, a female child is not desirable in this society,
and is received less attention by their parents.

This chapter has identified several socioeconomic and cultural factors that
predict spatial risk for gender-specific mortality in Matlab. However, a large
amount of variation is left unexplained in modeling spatial risk for mortality. This was
anticipated, as we know that health is influenced by many factors (Wilkinson et al.,
1998). However, this paper has unveiled the unequitable reduction in child mortality
in Matlab, and has identified associated socioeconomic and cultural factors for it.
Appropriate measures targeted to specific areas may reduce the geographic
variation of gender-specific child mortality.

Geographical analysis of health variation and its determinants have an impor-
tant role in the design of equitable health programs. Understanding the influence of
the factors on child mortality at a spatial scale can help decision makers develop an
effective strategy for area-based health programming. In conclusion, although this
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chapter describes the Matlab study area in Bangladesh, the findings of this study
may provide insight into the barriers for ensuring child survival elsewhere in the
country and the region.
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In this chapter, we examine travel distance and its effect on total and
avoidable hospitalizations using data from the capital health region in British
Columbia, Canada. We developed a GIS procedure to connect distance-to-
hospital with socioeconomic contexts of patient locations. The procedure
includes geo-coding hospital locations and patient locations to determine
travel distance for each hospitalization, generating several geographic
barriers, such as mountain crossing, to assess their impedance, and linking
patient neighborhood locations to socioeconomic variables of their locations.
It was found that the overall hospitalization rates have an inverse relationship
with distance-to-hospital, and living too close to a hospital may encourage
utilization of hospital resources. Even though low-income patients are more
likely to be hospitalized for avoidable conditions, the income effect influences
different dimensions to those affected by the distance effect. Thus, it explicitly
confirms the two aspects of the inverse of healthcare law that work
simultaneously: those with lower socioeconomic status and those living in
greater distance to hospitals tend to be less likely to access hospital care.
Furthermore, the inclusion of physical barriers to our evaluation enhanced
our understanding of local conditions and how they may affect  hospitalizations.
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INTRODUCTION
Access to healthcare includes at least two dimensions: economic access in

terms of affordability, and geographic access in terms of proximity to providers
(Gold, 1998). The so-called inverse care law—those most in need tend to have the
least access to healthcare services—also includes social and geographic dimen-
sions (Hart, 1971). The geographic aspect of access suggests that everything else
being equal, people tend to seek healthcare at a closer distance than at greater
distance (Gesler & Meade, 1988). Further, people may be discouraged from
seeking health care if they have to travel beyond a certain distance (Brustrom &
Hunter, 2001; Parkin, 1979; Williams et al., 1983); otherwise, other aspects of
their lives might be adversely affected (Yantzi et al., 2001).  In the Canadian context,
while efforts to reduce socioeconomic barriers to access to health care have been
ongoing, policies aimed at reducing physical barriers have been less persistent,
especially for hospital care.  The 1970s saw the construction of numerous smaller
hospitals outside of larger urban centers to help address the problem of geographi-
cally unequally distributed hospitals.  However, in the late 1980s and early 1990s,
many small hospitals were subsequently closed as a means of cutting costs (Liu et
al., 2001).

The changes evident in the policy arena reflect a lack of understanding of the
role of geography in terms of accessibility, which is due, in part, to a lack of routine
data collected on geographic access measurements (e.g., distance variables) and
limited methodologies.  While most methodological developments using distance
measurements have dealt with either potential accessibility or efficient ways of
allocating hospital resources (Love & Lindquist, 1995; Mayhew & Leonardi,
1982), effective engagement requires multiple linkages and several different data
sources.  This could prove challenging for data collection and manipulation.  With
the advent of geographic information systems (GIS), greater accessibility of geo-
reference data from multiple sources and renewed interests in local participation in
healthcare planning, it is now possible to evaluate geographic accessibility based on
actual distance and other geographic variables.  This process also provides a
mechanism whereby dialogue between geographic and socioeconomic perspec-
tives on access to health services can begin.

This chapter explores methods for assessing distance effects on hospital
utilization of GIS technologies. Previous studies (see Goodman & Fisher, 1997)
generally find that hospitalization rates decline as distance to hospital increases.
However, most of studies deal with a specific type of hospitalization (Mollsop,
1969) or specific population group (Mooney et al., 2000). In our case studies of
general and avoidable hospitalizations, we examine the general patient population
for all types of hospitalizations. In addition, both physical barriers and socioeco-
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nomic variables are included in the analyses.  Our approach is similar to that used
by Goodman and Fisher (1997), but draws on actual rather than potential distance
to hospitals.   In the remaining sections, we first describe the data and data
manipulation procedures undertaken to construct the geographic variables.  Next,
we document the distance effect on hospitalizations and model it in a multivariate
framework with the intent of bringing geographic and socioeconomic perspectives
together.  Finally, we offer some concluding remarks in terms of the methodological
and substantive findings.

DATA AND SAMPLE SELECTION

Database and Sample Area
Data for this study are drawn from the British Columbia Linked Health Data

Resource (BCLHD—Chamberlayne et al., 1998) which includes person-specific
data on the utilization of publicly funded health services, such as physician claims,
acute care hospital separations, continuing care services (home-based and residen-
tial care), mental health services, pharmacare, as well as vital statistics (births and
deaths).  These data were also linked to 1996 Canadian Census data using various
geographic indicators such as health region, local health area, census tract, census
division (or subdivision) and census enumeration area.  From the BCLHD , the
current study relies on data available from hospital separation files for a 10%
random sample of the BC population in the Capital Health Region (CHR) who were
registered with the provincial health services plan from April 1, 1990, to March 31,
1998. The CHR is an area of approximately 2,317 square kilometers encompass-
ing 12 municipalities, 15 aboriginal communities and unincorporated territory in four
electoral areas. The region, which is organized into four local health areas, is situated
on the southern tip of Vancouver Island and includes the southern Gulf Islands and
the provincial capital city of Victoria.  The Victoria metropolitan area is the largest
urban center extending to a radius of approximately 15 kilometers  from the
downtown core.  In 1997, the CHR served a total resident population of 334,541
people (8.4% of the total population).

.
Hospital Utilization

The hospital separation data include patient age-group (in five-year intervals),
sex, date of admission, date of separation, and the international disease codes
(ICD-9) by principal and primary diagnoses for admission.  To calculate hospital-
ization rates at the enumeration area (EA) level, we would ideally have patient
registries for the entire potential patient population similar to the ones in the UK and
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Manitoba   (Haynes, et al., 1995; Roos & Nicol, 1999). These registries allow one
to compare hospitalized patients to the population at-risk accurately within each
geographic unit. Since they are not available in British Columbia, we rely instead on
the 1996 census for these figures. This sample is restricted to those admitted during
the three-year period between 1994-96 so that the patient sample is close to the
1996 census year. We use the three-year (1994-96) hospital admissions as the
sample basis and the 100% population counts of the 1996 census as the exposure
to calculate hospital admission rates.  Over the three years, the sample registered
18,947 hospital separations across 49 EAs, with each EA having about 627
residents on average.  Note also that patients may be hospitalized several times
during the study period, and the hospitalization rates to be calculated therefore
include multiple hospitalizations during the study period with each admission being
counted as a single event.

We used Weissman, Gatsonis and Epstein’s (1992) definition of avoidable
hospitalizations— conditions for which hospitalizations can be avoided if ambula-
tory care is provided in a timely and effective manner.  There are 12 conditions
included in the measure (ruptured appendix: 540.0, 540.1; asthma: 493; cellulitis:
681, 682; congestive heart failure: 428: diabetes: 250.1, 250.2, 250.3, 251.0;
gangrene: 785.4; hypokalemia: 276.8; immunizable conditions: 032, 033, 037,
072, 045, 055; malignant hypertension: 401.0, 402.0, 403.0, 404.0, 405.0, 437.2;
pneumonia: 481, 482, 483, 485, 486; pyelonephritis: 590.0, 590.1, 590.8;
perforated or bleeding ulcer: 531.0, 531.2, 531.4, 531.6, 532.0, 532.2, 532.4,
532.6, 533.0, 533.1, 533.2, 533.4, 533.5, 533.6).  If one of the 12 conditions was
identified as the principal or primary diagnosis for admission, it was coded as an
avoidable hospitalization (AH=1). Admissions for other reasons were coded as
AH=0.  In total, there were 1,185  (6.3%) avoidable hospitalizations.

PUTTING HEALTH DATA INTO GEOGRAPHIC
CONTEXT

In this section, we develop a geo-processing procedure for contextual
measurements.  In order to evaluate distance effects, we first geo-coded each
patient and hospital so that distance to hospital could be calculated and put into
socioeconomic and geographic contexts.  However, in the process of seeking
hospital care, a patient must overcome socioeconomic and physical access
barriers. From a socioeconomic perspective, income is an important indicator of
access to care.  From a geographic perspective, various physical barriers should
be considered especially when the Euclidean distance is used. Some even suggest
that it is not distance, but other geographic barriers that affect people’s propensity
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for seeking healthcare (Kreher et al., 1995).  Figure 1 provides a flow chart for
various tasks in the process of modeling individual and contextual effects on hospital
admission.  At the first step, it is critical to review all the meta-data, so that common
projection and an acceptable level of precision can be established. To assess the
contextual effect of neighborhoods, we begin by linking patients’ residential
locations with census variables at the level of census enumeration area (EA).  Next,
we geo-coded each hospital location by latitude and longitude so that distance from
each EA (representing patient location) to a hospital could be determined.
Furthermore, given the terrain characteristics of the three health regions, getting to
a hospital may be complicated by having to cross a mountain, sea or other physical
barriers.  In order to represent these barriers, we generated dummy variables using
various geographic data obtained digitally through BC Land Resources at the
original scale of 1 to 250,000.  In particular, we generated barrier themes, such as
water-body, mountains and hills, and then overlaid with the distance feature.
Originally, we implemented all GIS procedures in ArcInfo 8.0, and then replicated
most procedures in ArcView 3.2a, a desktop GIS package; the detailed proce-
dures reported in the following sections are based on the ArcView GIS.

Figure 1: Data manipulation for assessing distance effects

Generate & overlay
terrain layers (mountain,
lake/inlet) with distances
for geographic barriers

Link patient EA to census
data at the EA and census
tract levels for location
and area income variables

Aggregate patient locations
by Enumeration area (EA)

Geo-code Hospital
Locations

Geo-database of
linked patients,
hospitals & census

Distance to hospitals

(EA locations to hospital locations)



248   Lin

Geo-Referencing Patient Locations
The BCLHD includes geographic identifiers from the larger health region, to

mid-level census tract or census subdivision in rural areas, to the smallest unit,
census enumeration area (EA), which is comparable to block group in the US
Census.  All geographic identifiers, regardless of size, are identifiable from their
respective geographic center (centroid) in latitude and longitude from the 1996
Census of the population.  Thus, by linking each EA in the hospital file with the EA
in the census file using the unique enumeration id, patients’ residential location can
be identified in terms of their respective EA centroids. These, in turn, can be used
to generate a point theme.

Income Variable
Census data come from the 1996 Census Profile Series, a series of tables that

represent over 100 selected census variables and are presented at different
geographic levels.  The majority of variables are concerned with the demographic
structure of the population.  However,  there are some income-related variables
indicative of the socioeconomic status of an area.  While multiple indicators or a
single indicator derived from multiple indicators are perhaps better alternatives to
a single-item indicator for demonstration purposes, median household income was
selected as a proxy measure of socioeconomic status.  However, approximately
17% of the EAs have suppressed incomes in the 1996 Census due to small
populations and a concern for confidentiality.  Even though less than half of EAs with
missing incomes affect our patient sample, we decided to impute missing values
using a method similar to Frohlich and Mustard  (1996) that uses the geographic unit
one level higher than the EA (i.e., census subdivision—CSD).  Generally speaking,
if income for a particular EA is missing, the average of incomes from adjacent
enumeration areas is assigned to it.

To classify neighborhoods with regard to income, we initially tried to assess
absolute deprivation (e.g., poverty level) at the census EA level.  However, there
is a lack of empirical literature in the Canadian context that compares individual and
area deprivations, let alone for the province of BC. Although this in itself is an
important research project, we decided to use the relative measure of four income
quartiles as the basis for the classification.  The lowest income quartile includes those
living in an EA with average annual household income below $38,414, the second
between $38,414 and $47,360, the third between $47,360 and $57,453, and the
highest above $57,453.

Geo-Coding Hospital Locations
It is necessary to geo-code all the hospitals in the province as patients in the

Victoria region could seek hospital care anywhere in the province. Digital hospital
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location files for British Columbia are available from both provincial and federal
governments; however, the accuracy level is relatively poor when we selected some
sample locations from these files.  For this reason, we decide to geo-code each
hospital location (longitudes and latitudes) from a 1:50,000 topographic map, and
these coordinates were then used to generate the hospital location theme or layer.
Most hospitals are clearly marked on the maps.  If a map at the requested scale was
not available, a map at the next level (1:100,000, or in rare instances 1:250,000)
was obtained.  If a hospital was not on a map, the hospital was called directly and
asked to identify the nearest street intersection as its location.  Using this procedure,
106 hospitals in the province were geo-coded, all of which were identifiable on a
map scale of 1:250,000 or larger.

Calculating Euclidean Distance
In geographic analyses, distances to a hospital can either be potential or actual.

Potential distance is hypothetical: it is assumed that patients will access a hospital
based on some rational criteria  (e.g., closest hospital).  However, patients do not
always go to the closest hospitals as demonstrated by Gesler and Meade (1988).
Actual distance is based on the hospital actually used by a patient although exact
travel mode (e.g., car, transit, walk), and routes may not necessarily be known.
Here, we know both potential and actual hospital location for each hospitalization,
However, our distance calculation is based on the actual rather than potential
distance. If a patient was hospitalized twice in two different hospitals during the
study period, two different measures of distance-to-hospital are calculated even
though the patient lived in the same EA.  Likewise, if a patient moved during the
study period, the hospitalization is measured from the associated EA. We chose
Euclidean distance over other distance measurements, as real network distance is
almost impossible to determine.  For many of the study areas, patient populations
are sparsely settled on mountains and islands, and the centroids of the EA may not
be close to any network, not even when detailed road networks are available. Given
the large geographic coverage at the provincial level, it is not feasible for us at this
stage of the study to use road-network to measure distance to hospital (Love &
Lindquist, 1995). It is important to note though that Euclidean distance-to-hospital
is assumed to be in proportion to real network distance.  Empirical evidence has
shown that real network distance tends to be consistently 20-25% greater than the
Euclidean distance, or half-way between Euclidean and rectilinear  (Manhattan)
distances (Francis et al., 1992).  This assumption is unlikely to affect our assessment
qualitatively as we emphasize relative rather than the absolute magnitude of distance
effects.
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Generating Geographic Barriers
For simplicity, three types of barriers—steep hill, lake or inlet and island

without a hospital—were identified. Conceptually, if we treat the straight line
between the EA and hospital as the Euclidean distance, then the box in the middle
of Figure 1 is the barrier.  If a line crosses any of the barriers, a dummy variable is
assigned.  First, data from a digital elevation model (DEM) were used to generate
TIN (triangulated irregular network) terrain for each study region.  The DEM was
provided with elevation readings that included x-y coordinates comparable to the
resolution of a 1:250,000 topographic-map.  ArcView 3D extension was used to
generate TIN from the DEM table.  The resulting TIN model was identical to the
TIN generated by ArcInfo.  However, one needs to covert the TIN to a polygan
coverage by retaining hill slope and elevation attributes.  A steep hill can then be
defined using a 12% slope or elevation difference of 200 meters or more between
the highest passing elevation to either points of the distance line (EA or hospital
location).  If an Euclidean distance line crossed a steep hill, a dummy variable—hill
crossing— was coded one, otherwise, it was coded zero.  Likewise, lake or inlet
barriers were defined when a Euclidean distance line appeared across (intersect
with) either one.  Finally, patients living on an island without a hospital must use a
ferry, thereby imposing additional constraints on travel to hospital.  Figure 2
provides a graphical example of TIN with the hospital and sample locations of EA

Figure 2: Patient (EA) and hospital locations in Victoria, BC
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centroids for a portion of one of the three health regions studied.  Using this figure,
one can eyeball each EA location and identify whether or not a patient needs to
cross an inlet for hospital care.  Note that the map can only provide a visual
impression of the relative location and general landscape, as one cannot determine
which patients went to which hospitals simply from the map.

For the most part, the implementation of the above procedure is straightfor-
ward.  However, there is also a need to convert digital sources of different
projections to the same projection system.  The UTM-N9 was used to realign the
road network, one or two reference layers from different UTM zones to UTM-N9
and several digital layers (DEM, Lakes, coastal lines) of the Albere conformal
project to the UTM.  The key in ArcView is to convert all layers to longitude and
latitude, and then re-project them to the desired projection system.  Although new
variables can be easily added through linkage of tables with a common field, or
though spatial joining (e.g., map overlay), careful documentation is needed along the
way.  Without this documentation, it is very easy to lose track of the level of
geography (e.g., census tract, EA) from which new variables are derived.  The final
step is to attach the new variables to each patient identifier, along with their
respective hospital records.  This is discussed in the following section.

ANALYZING DISTANCE EFFECTS ON
HOSPITALIZATIONS

In this section, we analyze hospitalizations in the context of socioeconomic
condition of neighborhood and geographic accessibility. We first provide some
descriptive pictures on hospitalizations and then model income and distance effects
under a multivariate framework.  At the descriptive level, we use EA total
population as the exposure to derive hospitalization rates for several distance-to-
hospital ranges (Pappas et al., 1997).  Rate-based multivariate analyses, however,
require either population-based survey or aggregate analytical models (e.g.,
Poisson regressions). Neither of these are  appropriate in this particular case, as we
do not have an at-risk population (exposure) that corresponds  to patient-level
variables (e.g., age, sex, income). For this reason, we adopt logistic regression for
the multivariate analysis.

Descriptive Analysis of Overall Hospitalizations
From a population health perspective, hospitalization rates should be more or

less evenly distributed if patient populations are distributed evenly across geo-
graphic space.  The degree to which rates vary across different geographic
dimensions reflects level of accessibility from a provider’s point of view, and ability
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and willingness to travel from a patient’s point of view.  Figure 3a shows the three-
year average (1994-96) hospitalization rate according to distance-to-hospital.
Overall, the hospitalization rate declines as distance increases with a reverse trend

Figure 3: Annual average of hospitalization rates per 1,000 by distance in
Capital Health Region

a. Overall rates including all communities

b. Adjusted rates excluding satellite communities
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and small peak around 20 to 35 km.  It seems that residents located near a hospital
are either sicker or more willing to seek hospital care than residents at greater
distance.  Given the magnitude of the difference, this pattern is likely to persist even
when potential confounding factors, such as age, sex and income, are introduced
into the model.

To determine why there are small peaks of hospitalization rates between 25-
35 km, it is important to understand local geography. As noted earlier, the primary
urban area for Victoria is within 15 kilometers to the city center.  A community
located 25 kilometers beyond an urban center often represents a separate
catchment area rather than a continuous suburb to the urban core. For example,
Sooke, which does not have a hospital, is a town (population approximately 3,000)
located approximately 30 kilometers from Victoria and is separated by hills and
forest. While 20-30 kilometers may not be overly burdensome to go to a hospital,
it may not be particularly convenient either.  Therefore, even though there is no co-
payment associated with hospital care, people in these communities may not be as
likely to access hospital care as those who live closer by.

In the migration literature, neutral migration rates are used to describe a region
with an average propensity of in and out migration (Liaw, 1990).   Borrowing from
this concept, we may want to try to determine a hospitalization rate when the
distance effect is neutralized (i.e., potential convenient hospital shoppers (patients)
are deterred by travel distance and cost).   If there are sizeable communities located
20-35 kilometers away from a major urban center and hospitals, the average
hospitalization rates among these communities may provide a reference point for a
“reasonable” hospitalization rate with neutralized distance effects (Imbens &
Angrist, 1994).  For convenience, we label them "satellite communities." and
operationally define them as those with populations above 2,500 which are either
located on an island without any hospitals, or are communities from 20 to 30 km
away from a major urban center and  separated by farms, mountains or water
bodies. Indeed, if we delete observations from these communities, the local peaks
in Figure 3a become negligible (Figure 3b).

The influence of satellite communities on hospitalization rates provides an
important clue for multivariate modeling.  In urban geography, it is known that
population density around an urban center is inversely related to distance from the
urban center. If there are satellite cities located within 20 kilometers of a major
center, a small peak will be evident in the urban density function around 20 km.
Since the amenity that a hospital provides only takes effect when people suffer some
fairly serious illness or injury, we suspect that living fairly close to a hospital induces
greater propensity for going to a hospital, and living relatively far from a hospital
deters some necessary hospital care. Satellite communities represent a more or less
median distance range to hospital, therefore, a reasonable hospitalization rate in
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terms of neutralized distance effect.  If we take this reasoning seriously, we can
compare satellite communities with all other communities. However, subsequent
comparisons between satellite and other communities found little differences (e.g.,
sex, income). The only exception to this is the distribution of the elderly population,
with satellite communities having a greater proportion of elders (56% versus 53%).
This difference, however, is not sufficient  to generate  a substantial  difference in
terms of hospitalizations.

Multivariate Analysis of Avoidable Hospitalizations
From the previous case study, it was determined that satellite communities

appear to be “outliers,” and if we can control for them, the overall hospitalization
rates display an inverse relationship to distance-to-hospital.  Based on this finding
and the fact that more than 94% of hospitalizations are unavoidable, we can
compare avoidable and other hospitalizations, treating other hospitalizations as

Control variables Odds-ratio Odds-ratio Odds-ratio 
Old (35-55 referent) 2.870** 2.849** 2.878** 
Young (35-55 referent) 1.438** 1.429** 1.439** 
Sex (male referent)  0.741** 0.735** 0.735** 
Satellite communities 1.197** 1.206** 1.177** 
Distance (0-5 km referent)    
5-10 0.758** 0.805** 0.792** 
10-15 0.671** 0.727** 0.709** 
15-20 0.921 0.944 0.92 
20-25 0.687** 0.732 0.737** 
25-35 0.536** 0.540** 0.505** 
35-50 0.751** 0.749** 0.727** 
50-100 0.761** 0.797** 0.752** 
100+ 0.926 0.953 0.924 
Socioeconomic    
lower 25% (top 25% referent)  1.296** 1.321** 
mid-low 25% (top 25% referent)  1.246** 1.258** 
mid-up 25% (top 25% referent)  1.106 1.101 
Physical Barriers    
Lake/inlet crossing   0.923 
Hill crossing    1.164** 

    
Note:    
* and ** indicate the significant levels of 0.05 and 0.01 respectively 
 

Table 1: Logistic regression for avoidable hospitalization
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known and “normal” following distance decay while explicitly controlling for
satellite communities.  Under the logistic regression framework, the dependent
variable is the likelihood of having an avoidable hospitalization versus an unavoid-
able hospitalization.  We run three nested logistic regression models (Table 1)
starting with a simple model (Model 1) controlling for age, and sex, while looking
at the distance effects.   In Model 2, socioeconomic variables are introduced to see
if some of the distance effects can be explained by income gradients along with
distance to hospital. Finally, in Model 3, a number of physical barriers are added
to shed some light on the overall geographic determinants of avoidable hospitaliza-
tion.

Evidently, age effects are markedly different: compared to those 35-55 years
of age, those in both younger and older age groups are more likely to experience
avoidable hospitalizations.  In addition, males are more likely than females to have
an avoidable hospitalization. Further, we find that avoidable hospitalizations
generally decline with distance for the first few distance categories, and then
fluctuate somewhat for the further distance categories.   Compared to the 0-5 km
distance category, being 5-10 km from the hospital reduces the odds of avoidable
hospitalization by 0.758, while being an additional 5 km further away reduces the
odds still further to 0.671.  Since the total hospitalization rate follows a distance
decay curve, avoidable hospitalizations seem to have a steeper curve, although not
quite as smooth as all other hospitalizations.  Controlling for satellite communities,
the local peak originally found around 20 km loses statistical significance.  However,
the lowest avoidable hospitalization rate appears in the 35-50 km category rather
than in the further distance categories as was evident with regard to overall
hospitalization rates.

Although the introduction of the income variable has little impact on the
distance effects (Model 2), the results are consistent with general expectation.
Patients from the two lowest income groups are approximately 1.25 times as likely
to be hospitalized for avoidable conditions as those in the highest income group. For
those in the second highest income group, there is no significant difference from the
highest income group in terms of avoidable hospitalization.

Finally, we introduce in Model 3 two physical barriers: inlet/lake and mountain
crossings generated from GIS operations.  Relatively speaking, crossing an inlet or
lake does not have significant effect.  However, crossing a mountain or hill increases
the likelihood of an avoidable hospitalization. To interpret these effects, we also
need to consider distance and local geography.  For instance, people from many
distance communities need to cross a steep hill to get to the hospital. When the hill
crossings are included, they not only increase the likelihood of an avoidable
hospitalization, but also reduce odds for the last few distance categories (e.g., 50-
10).  Thus, steep hill crossings may take away some of the distance effects from
farther distance categories.
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CONCLUSIONS AND DISCUSSIONS
In this chapter, we developed a GIS procedure to generate variables for

modeling distance-to-hospital in geographic and socioeconomic contexts. Since
individual-level SES variables were not available, we created a socioeconomic
context by linking census data with individual patient data.  In addition, we believe
that physical barriers, such as lakes, inlets, mountains, hills and islands, will
complicate simple Euclidean distance measures, and should somehow be ac-
counted for.  To this end, we introduced a number of variables reflecting several
layers of physical features, and let them intersect with distance-to-hospital.  We
believe that new insight can be gained by creating and incorporating physical
barriers into access to care measures.

Through careful examination of local conditions, we unraveled “neutral
hospitalization rates” represented by satellite communities. These rates tend to be
slightly below the regional average.  When we simply plotted hospitalization rates
along distance to hospital, we observed a small peak on the distance decay curves.
When we controlled for the impact of residence in satellite communities, the overall
hospitalization rates had an inverse relationship with distance-to-hospital.  This
finding is robust when additional control variables are included. However, it is hard
to imagine that people will find a hospital attractive enough to prompt them to go
more often, as is the case with regard to regular shopping (Pellegrini, Fotheringham
& Lin ,1997). In a healthcare system without gate fees, distance-to-hospital may
be an obvious deterrent to hospital care either because one is less able or willing to
travel the required distance or because referrals by physicians for those living far
away from a hospital are less frequently given (Mellsop, 1969). A well-defined
neutral hospitalization rate could serve as a yardstick for assessing the conse-
quences of the distance effect on hospitalizations.  If satellite communities and
communities near a hospital tend to have similar health outcomes while differing
substantially in hospitalization rates, then we can perhaps conclude that living close
to a hospital may encourage utilization of hospital resources.

We found that avoidable hospitalizations generally follow similar variations in
distance to the non-avoidable hospitalizations with slightly greater distance deter-
rent effects for 5-10 and 10-15 km categories. Consistent with previous literature
(Laditka & Johnston, 1999; Pappas et al., 1997), low-income patients are more
likely to be hospitalized for avoidable conditions. We also confirmed that the
income effect influences different dimensions to those affected by the distance
effect, since the inclusion of income variables does little to change the distance
effects.  Finally, to demonstrate the use of physical barrier variables, we included
crossing hills, lakes or inlets.   The inclusion of these variables not only changed some
distance effects, but also offered some insight into avoidable hospitalizations.  For
instance, crossing hills or mountains significantly increases the likelihood of having
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an avoidable hospitalization. Since we know that the majority of villages or small
communities in mountain areas or on islands often lack primary and ambulatory care
services, it is expected to see a greater likelihood of avoidable hospitalization
(Casanova & Starfield, 1995).

There are several limitations to this study.  First, the simplicity of Euclidean
distance comes with some compromises. We assume that the Euclidean distance
to a hospital is in proportion to the true network distance to the hospital.  Even
though we included additional physical barriers to correct the measurement, we
should only interpret distance effects in relative terms. If a health region intends to
quantify distance effects for planning purposes, it is important to gauge the absolute
magnitude of the distance effects, or at least convert Euclidean distance effects into
network distance effects.  In this situation, we will have to resort to more accurate
network distance measurements to calibrate the distance effect (Mayhew &
Leonardi, 1982; Hansen & Schwab, 1987). Second, we did not include the
hospital context in our design, which could be an important omission.  A complete
conceptualization of distance-to-hospital should bring individual characteristics,
neighborhood characteristics, travel conditions and hospital characteristics into the
same modeling framework.  Finally, since we did not have a complete roster of all
those registered with the Medical Services Plan, we had to rely on census data to
generate the population figures necessary to calculate hospitalization rates. This
limited our level of confidence in the hospitalization rates for small areas. Despite
these limitations, the study represents an important step in understanding the
integration of geographic and socioeconomic approaches to health services
accessibility. Methodologically, the use of the GIS to generate contextual variables
for both socioeconomic and physical environments has expanded GIS applications,
and has helped to generate new hypotheses (e.g., neutral hospitalization rate).
Substantively, it explicitly confirms the two aspects of the inverse of healthcare law
that work simultaneously: those with lower socioeconomic status and those living
in greater distance to hospitals tend to be less likely to access hospital care. Further
studies are needed to disentangle various distance decay effects in relation to other
healthcare services, and their planning implications for new and existing hospital
locations in relation to other health facilities.

ENDNOTE
1 This research was conducted as part of the project, “Health Care Restructur-

ing and Community-Based Care: A Longitudinal Study,” funded by the
Canadian Health Services and Research Foundation, 1998-2001 (LOI 97-
054). I appreciate support and comments provided by Richard Stanwick, the
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medical chief officer, from the Capital Health Region, and Diane Allen for data
processing.
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This chapter introduces two new GIS-supported methods of measuring
accessibility to primary healthcare. The improved floating catchment method
defines the service area of physicians by a threshold travel time while
accounting for the availability of physicians. The gravity-based accessibility
method considers two factors: travel times from service providers (a nearby
supply is more accessible than a remote one) and competition intensity by
residents for such a service (measured by gravity-based potential). The
methods are applied to examining accessibility to primary care in the
northern Illinois region in 1990 and 2000. The GIS-based methods may be
used to help the U.S. Department of Health and Human Services and state
health departments define health professional shortage areas.
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INTRODUCTION
Access to healthcare is affected by where physicians locate (supply) and

where people reside (demand). The geographic distribution of physicians does not
necessarily match that of population. Some areas experience physician surplus, and
others have physician shortage. The shortage has been especially pronounced in
rural areas and impoverished urban communities (Council on Graduate Medical
Education or COMGE, 2000; Rosenblatt & Lishner, 1991). The U.S. federal
government spends about $1 billion a year on programs designed to alleviate access
problems, including awarding financial assistance to providers serving designated
shortage areas (General Accounting Office or GAO, 1995).

These federal programs depend on two main systems for identifying shortage
areas (GAO, 1995; Lee, 1991). One designates Health Professional Shortage
Areas (HPSAs), the other Medically Underserved Areas or Populations (MUA/
MUPs). Both systems use the ratio of the number of providers to population within
a geopolitical unit (usually a county) as a primary indicator. Neither system,
however, adequately reflects the fact that the availability of services depends not
only upon the supply of resources in a community, but also the supply of such
resources in neighboring communities, and the distance and ease of travel among
them (Klienman & Makuc, 1983, p. 543). This limitation of HPSA or MUA/MUP
could easily overestimate shortage in some areas and underestimate shortage in
others so that funding may not be channeled to where it is most needed (GAO,
1995). Despite efforts to improve the methods (Department of Health and Human
Services or DHHS, 1998), two geographic problems have not been addressed
appropriately: (1) not accounting for the actual spatial distributions of physicians
and population within the areal unit (e.g., county), and (2) not considering the actual
road network travel time between supply and demand and travel across geopolitical
boundary. Better methods for defining physician shortage areas are needed to help
direct the limited federal resources to the truly underserved population.

While we are aware that socio-demographic characteristics including ethnicity
and socioeconomic status may also influence healthcare accessibility, this chapter
will focus primarily on spatial accessibility. Identifying the spatial mismatch between
healthcare supply and demand is the first step towards an improved healthcare
delivery system. The purpose of this chapter is to show how the existing DHHS
designation systems for physician shortage areas can be improved by applying GIS
technology to data at a finer geographic resolution.  Specifically, two new methods
will be used: the improved floating catchment method and the gravity-based
accessibility method. Both involve the analysis of travel time through a road network
and better reveal the spatial access to healthcare. Physician shortage areas are more
accurately identified by the methods.
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EXISTING METHODS
A geographic area is designated as a primary care HPSA if the following three

criteria are met (see DHHS, 1980; Lee, 1991; GAO, 1995; and http://bphc.hrsa.gov/
dsd/default.htm for detail):

I. The area is a rational area for the delivery of primary medical care services,
which is one of the following:
(a) A county (or parish in Louisiana; census area in Alaska; municipio in Puerto
Rico) or a group of contiguous counties whose population centers are within
30 minutes travel time of each other;
(b) A portion of a non-metropolitan county or an area made up of portions of
more than one county, whose population, because of topography, market or
transportation patterns, distinctive population characteristics or other factors,
has limited access to contiguous area resources, as generally measured as
travel time greater than 30 minutes from other resources;
(c) Established neighborhoods or communities within metropolitan areas that
display a strong self-identity (as indicated by a homogeneous socioeconomic
or demographic structure and/or a tradition of interaction or interdepen-
dency), have limited interaction with contiguous areas and have a minimum
population of 20,000;

II. One of the following conditions prevails within the area:
(a) The area has a population to full-time-equivalent (PTE) primary care
physician ratio of at least 3,500:1.
(b) The area has a population to PTE primary care physician ratio of less than
3,500:1 but greater than 3,000:1 and has unusually high needs for primary care
services or insufficient capacity of existing primary care providers.
An area is considered to have unusually high needs if:

(i) The area has more than 100 births per year per 1,000 women aged 15-
44;
(ii) The area has more than 20 infant deaths per 1,000 live births;
(iii) More than 20% of the population (or of all households) have incomes
below the poverty level;

An area is considered to have insufficient capacity of existing primary care
providers if two or more of the following criteria are met:

(i) There are more than 8,000 outpatient visits per year per FTE primary
care physician serving the area;
(ii) There are unusually long waits for routine appointments (e.g., longer
than 1 hour for a pre-scheduled appointment);
(iii) There is excessive emergency services use for routine primary care;
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(iv) Two-thirds or more of the area’s physicians do not accept new
patients;
(v) There is abnormally low utilization of health services, as indicated by an
average of 2 or less office visits per year;

III. Primary medical care professionals in contiguous areas are overutilized,
excessively distant or inaccessible to the population of the area under
consideration. They are considered so if one of the following conditions are
met:
(a) Primary care professional(s) in the contiguous area are more than 30
minutes travel time from the population center(s) of the area being considered
for designation;
(b) The contiguous area population to FTE primary care physician ratio is in
excess of 2000:1;
(c) Primary care professional(s) in the contiguous area are inaccessible to the
population of the area under consideration because of specified access
barriers, such as: significant differences between the demographic (or socio-
economic) characteristics of the area under consideration and those of the
contiguous area and a lack of economic access to contiguous area resources
(i.e., where more than 20 percent of the population or the households have
incomes below the poverty level).

An MUA/MUP is designated based on four factors of health service need (see
Lee, 1991; GAO, 1995; and http://bphc.hrsa.gov/dsd/default.htm for detail):
I. Primary care physicians-to-population ratio;
II. Infant mortality rate;
III. Percentage of the population with incomes below the poverty level;
IV. Percentage of the population aged 65 and older.

These four variables are applied to county or small area data to obtain a single
Index of Medical Underservice (IMU) score between 0 and 100 assigned to each
area, with 0 representing the most underserved and 100 the best-served area.

Both DHHS methods of identifying physician shortage areas, then, consider
using a variety of spatial and non-spatial criteria. Both also use predefined
geopolitical boundaries, in most cases counties, as the basic unit for calculating the
physician to population ratio. The implied assumptions of the spatial criteria used
are that: (1) people within the rational service area have equal access to the
physicians within that area, and (2) people within the rational service area do not
go beyond that area to seek care. Yet these assumptions are among the most
criticized features of the spatially related criteria for identifying physician shortages
(GAO, 1995; COGME, 1998). The first assumption of this methodology leads to
the majority of the HPSAs (68% in 1997) and most of the MUA/MUPs being



264   Luo & Wang

whole counties or a group of counties (COGME, 1998; GAO, 1995). Only
occasionally are portions of a county (e.g., a community or a population group) or
a facility (e.g., a prison or hospital) designated as an HPSA.  It is clearly possible
for pockets of population within a county not designated as a shortage areas to have
severe access problems (an underestimate), and similarly, for pockets of population
within a designated shortage county to have adequate access (an overestimate).
The second assumption means that the methods fail to fully account for the fact that
people often seek care in adjacent or nearby geopolitical units  (Klienman &
Makuc, 1983; Wing & Reynolds 1988; GAO, 1995).  Although Step III of the
HPSA method is intended to consider the adjacent areas, the physician-to-
population ratios are still calculated within their respective geopolitical boundaries,
and the actual interaction across boundaries is not accounted for. Even in the most
recent proposed revision of the shortage area designation, the rational health service
areas are still primarily based on fixed and predefined geopolitical boundaries
(DHHS, 1998).

The problems of using a predefined geopolitical boundary as the basic unit to
determine the adequacy of supply of a service or resource relative to its demand
have long been recognized in geography but are still not well resolved (e.g.,
Openshaw & Taylor, 1981).  This is partially due to the complexity of the problem,
i.e., both the supplies and demands are spatially distributed and are likely
overlapping, and competitions exist among the supplies and the demands (e.g.,
Huff, 1963, 1964).  In addition, the scarcity of available data at fine geographic
scales made previous attempts to more accurately identify shortage areas techni-
cally difficult (Makuc et al., 1991). The increasing abundance of digital data (e.g.,
socioeconomic data, street and road network, physician database) and advance-
ment of GIS technology now make it possible to locate physicians more accurately
and identify population distribution at finer resolutions (Love & Lindquist, 1995;
Kohli et al., 1995; Parker & Campbell, 1998).

STUDY AREA AND DATA
A group of counties surrounding DeKalb, of Illinois, are chosen as the study

area (only for demonstrating the methodology). See Figure 1.
The 1990 population data at the census tract level were obtained from the U.S.

Census Bureau. The 1999 population data (to approximate the year 2000
population while the new 2000 Census data were unavailable), estimated by CACI
International, Inc., were extracted from the Environment System Research Institute
(ESRI) Data and Maps Compact Disk. The study covers two years in order to
examine the temporal changes. For simplicity, the centroid of a census tract is used
to represent the location of all population in the tract.
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The primary care physician data of Illinois for the year 1989 and 2000 were
purchased from the Physician Master File of the American Medical Association via
Medical Marketing Service, Inc. The 1990 physician data were not available. The
1989 physician data were used to match the 1990 Census population data, and the

Figure 1: Census tracts and physician locations by Zip in the study area

Census Tract Boundary
County Boundary 10 20 Miles0

Physician Location by Zip

Census Tract Centroid
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2000 physician data were used to match the 1999 estimated population data.
Primary care physicians include family physicians, general practitioners, general
internists, general pediatricians and some obstetrician-gynecologists (Cooper,
1994). This case study focuses on primary care physicians because these physi-
cians are an integral component of a rational and efficient health delivery system and
they represent the first line of defense for the population. Only after seeing one of
these physicians are many of the ill sent to see specialists. With soaring healthcare
costs, the need for primary care physicians also increases, because prevention is at
the heart of primary care and good primary care can avoid or reduce costly,
unnecessary diagnostic and treatment intervention by specialists (Lee, 1995). The
methodology can be easily adapted to identify shortage areas of other healthcare
specialties, and at state and national levels.

Ideally, the physician locations should be geo-coded by their street addresses
with GIS software, a process of converting the address information to x and y
coordinates of a point on the map by matching address name and interpolating the
address range to those stored in a digital map (e.g., TIGER line file). However, a
significant number of records in the Physician Masterfile only have “P. O. Box”
addresses, which are not feasible for geo-coding. To illustrate the methods, this
study simply uses the centroid of  Zip Code of a physician’s preferred address to
represent the physician’s location. Zip Code represents a finer resolution than
county and has been used extensively in health research (e.g., Ng et al., 1993;
Parker & Campbell, 1998; Knapp & Harwick, 2000). See Figure 1.

The GIS methods discussed in the next two sections utilize travel time between
any pair of population and physician locations. Travel time is assumed to be the
shortest time driven through a road network composed of all levels of roads.
Specifically, the network includes all roads with CFCC codes between A11
(interstate highway) and A48 (neighborhood road). The CFCCs (census feature
class codes) are used by the U.S. Census Bureau in its Topologically Integrated
Geographic Encoding and Reference (TIGER) line files. Speed limits, correspond-
ing to various CFCC codes, are used to determine the impedance value for each
road in the network quickest path computation. See Wang (2000) for more details.

THE IMPROVED FLOATING CATCHMENT
METHOD

The floating catchment method has been used in job accessibility studies (e.g.,
Peng, 1997; Wang, 2000). Based on Radke and Mu (2000), an improved floating
catchment method is developed. The method is implemented in seven steps:
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a) Use GIS street network analysis to compute the travel time between any pair
of physician location (taken as the Zip Code area centroid) and population
location (taken as the census tract centroid).

b) For each physician location k, select population locations that are within a
reasonable travel time (e.g., 30 minutes) of that physician location, defining an
imaginary catchment area for physician location k (referred to as catchment
k hereafter).

c) Compute the physician-to-population ratio for catchment k (Rk) using the
number of physician(s) at the physician location k (Phyk) and the sum of
population within catchment k:

∑
∈

=

kCt
t

k
k Pop

Phy
R

(1)

where Popt is the population of tract t whose centroid falls within catchment
k, and Ck identifies all these tracts.

d) Repeat steps b) and c) for all physician locations.
e) For each population location i, search all physician locations that are within the

reasonable travel time (e.g., 30 minutes), and sum up the physician-to-
population ratios at these locations.

f) Repeat step e) for all population locations.
g) Run a GIS query to identify all the census tracts with a ratio less than the DHHS

standard (1:3,500 for primary care) as the shortage areas.

Figure 2 shows an example of this method. For illustration purposes, assume
that each census tract has only one person residing at its centroid and each physician
location has only one physician practicing there. Also assume the reasonable travel
time is 30 minutes. The different shades of the polygons represent different
physician-to-population ratios. Under our assumption, the catchment around
physician location a (or simply catchment a hereafter) has one practicing physician
there and eight persons (eight black dots) residing within the catchment. Therefore
the physician to population ratio for catchment a is 1/8. All the centroids within
catchment a (1, 2, 3, 4, 6, 7, 9, 10) will be assigned an initial ratio of 1/8. Similarly,
all the centroids within catchment b (4, 5, 8, 11) will be assigned an initial ratio of
1/4. Residents at centroids 1, 2, 3, 6, 7, 9 and 10 have access to physician a only
and thus their ratios remain as 1/8; and residents at centroids 5, 8 and 11 have
access to physician b only and thus their ratios remain as 1/4. However, centroid
#4 is located in the overlapping area formed by catchment a and b, and has access
to either physician a or b, and therefore the physician-to-population ratio there is
the sum of the initial ratios in catchments a and b (i.e., 1/8 + 1/4 = 3/8).
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Several features need to be noticed in the improved floating catchment method:

(1) The catchment is centered on physician location rather than on population
location, thus the travel time between physicians and any person within the
catchment does not exceed the reasonable travel time.

1
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4
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9
10

11
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14 15

a b

c

30-minute catchment area
for phycian a
30-minute catchment area
for phycian b

County boundary

 Physician location and ID

Census tract boundary

 Census tract centroid and ID
1

a

R=1/8 R=1/4=2/8R=1/8+1/4=3/8

Figure 2: A simple example of the improved floating catchment method
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(2) The physician-to-population ratio is calculated using only the physicians
practicing at the center of each catchment rather than by counting all the
physicians within the catchment. Those physicians nearby (in or outside the
catchment but not at the center, e.g., physician a in catchment b) will each have
their own service area, which may overlap with the catchment under consid-
eration, and thus their service will not be available to all the population within
the catchment under consideration.

(3) The contributions of nearby physicians are included only in the ratios for the
overlapping areas of catchments since people living there can be served by
physicians at either location (e.g., people residing at centroid #4 can be served
by physicians at either location a or location b) and thus they enjoy a higher
accessibility than those who live in the non-overlapping area (e.g., people
residing at centroids #5 or #9).

The improved floating catchment method has several advantages over the
conventional method of identifying physician shortage areas. It uses smaller areal
units for population and physician distributions (i.e., census tracts and Zip Code
areas instead of counties); considers potential interaction between patient and
physician across administrative border; and accounts for the travel time between
patients and physicians. However, it draws an artificial line (say, 30 minutes)
between an accessible and inaccessible physician. Physicians within that range are
counted equally regardless of the actual travel time (e.g., 5 minutes versus 25
minutes). Similarly, all physicians beyond that range are defined as inaccessible,
regardless of any differences in travel time. In other words, the competition of health
care is confined within the range. A better approach is to define accessibility using
a gravity model. In a gravity model, the intensity of interaction (e.g., frequency or
likelihood of visiting a physician) is inversely related to travel time (or distance), and
the measure is continuous rather than dichotomous.

THE GRAVITY-BASED ACCESSIBILITY METHOD
We start with a simple gravity model to illustrate the concept. Hansen (1959)

proposes the following model for accessibility (Ai) at location i:

.
1

∑
=

−=
n

j
ijji dPhyA β

(2)

where Phyj is the number of physicians at location j, dij is the travel time between
population location i and physician location j, β is the travel friction coefficient (an
empirically determined constant) and n is the number of physician locations. In the
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model, a physician nearby is considered more accessible than a remote one. This
index measures how far residents are from all physicians. The higher the value of Ai,
the closer the residents at location i are to physicians.

To illustrate the model, we use a simplified example with three zones. In Figure
3, each of the three zones A, B and C has one physician. Zone A has 500 residents,
Zone B has 2,000 residents and Zone C  has 1,000 residents. Assume the intrazonal
travel time is 10 minutes (i.e., residents in Zone A on average travel 10 minutes to
see the physician in Zone A itself) for all three zones, 20 minutes between A and B,
and 30 minutes between A and C or between B and C.  Assuming β=1 for
simplicity, we have:

.166.0,183.0,183.030
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We may conclude that residents in zones A and B are closer to physicians than
those in Zone C.

One limitation of equation (2) is that it only considers the “supply side” of
physicians, and not the “demand side”—the competition for available physicians
among residents. In Figure 3, with one physician in each zone, zone A has 500
residents and zone B has 2000 residents (and the same travel time from zone C).
Obviously we would expect that zone A should have a better accessibility to
physicians than zone B.

Zone A:
1 physician,
500 residents

Zone B:
1 physician,
2000 residents

Zone C:
1 physician,
1000 residents

Intrazonal travel time = 10 min

20

30

30

Figure 3: A simplified example illustrating gravity accessibility with three
zones
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Among others, Joseph and Bantock (1982) improve the measurement by also
considering the demand side—competition for healthcare services among people.
With the essence of their model unchanged, we restructure the model as follows for
easier interpretation:
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This new index re-scales the proximity to a physician location j by the
location’s service competition intensity (Vj), and Vj is a measure of the potential of
physicians at location j to all populations (Popk, k=1, 2, …, m). Again dij is the travel
time through the actual road network, and β is the travel friction coefficient. A similar
approach is used for defining job accessibility in Shen (1998) and Wang (2001).

Using the same example in Figure 3, we first compute a zone’s physician
competition intensity V based on its relative location to residents in all zones:
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Since Zone B has more residents than others, VB is the highest among three
zones. Equation (3) rescales the supply-side-only physician proximity in (2) by the
demand competition intensity V, and yields a comprehensive accessibility index:

.0008578.0,0008430.0,0009221.0183/258/183/ 30
1

20
1

10
1 ===++= cBA AAA

This clearly identifies that Zone A is most accessible to physicians, Zone C the
second, and Zone B the least.

This accessibility index may be interpreted similarly to the physicians/popula-
tion ratio. Indeed the weighted average of accessibility in all locations (population
as weight) is equal to the physicians/population ratio in the whole study region (see
Shen, 1998, for a proof). The larger the value of Ai, the better accessibility the
people at location i enjoy.

RESULTS AND DISCUSSION
The focus of this chapter is on the methodology. Not every aspect of the

DHHS shortage designation methods is considered (e.g., the possibility of using a
lower ratio than 1:3,000 for areas showing special needs or using FTE concept for
physician count). The results shown here are not directly comparable with those
generated by DHHS methods (DHHS, 1990, 1999).

The results of applying the two GIS methods are presented in Figures 4-7. One
may use actual primary care physician visit data to determine the β value in the
gravity-based accessibility method using a regression such as:
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β−= ijjiij dPhyaPopT (4)
where Tij is the number of patient visits between population location i (Popi) and
physician location j (Phyj), and a is constant. We do not have access to such data
for this study, and have experimented a number of values (0.6, 0.8, 1.0, 1.2 and 1.4)
based on job commuting analysis (Wang, 2000). The result shown in figures 6-7
are based on β = 0.8. Using other β values generates very similar patterns.

Shortage Area (<1:3,5000)
0.00007 - 0.000157
0.000158 - 0.000234
0.000235 - 0.000285

Surplus Area (>1:3,5000)

Census Tract Boundary

0.000286 - 0.000457
0.000458 - 0.000639
0.000640 - 0.00087

County Boundary 10 20 Miles0

Figure 4: Results from applying improved floating catchment method to 1990
data
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The following observations can be made. First, both GIS methods reveal more
detailed spatial variation within each county than the conventional methods, and
clearly reveal both the severity of shortages and the level of surpluses. Second, both
methods consider potential interactions between physicians and patients across
county boundaries, and thus remove the limitation of using predefined geopolitical
boundaries in the traditional methods. Third, the overall healthcare accessibility in

Shortage Area (<1:3,5000)
0.000023 - 0.000072
0.000073 - 0.000177
0.000178 - 0.000281

Surplus Area (>1:3,5000)

Census Tract Boundary

0.000319 - 0.000959
0.000960 - 0.001792
0.001793 - 0.002605

County Boundary 10 20 Miles0

Figure 5: Results from applying improved floating catchment method to 2000
data
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2000 has apparently improved significantly compared with that in 1990 (Figures 4-
7). Fourth, the majority of the shortage areas are rural areas outside of urban centers
(e.g., Rockford). Fifth, since the study area is limited to the DeKalb and surrounding
counties, the actual health care status for the areas on the edge of the study area may
not be accurately reflected since data from neighboring states are not included.

The two methods generate similar physician shortage patterns. The gravity-
based accessibility method is more accurate than the floating catchment method

Contours in thousandths

Shortage area as identified by
Improved Floating Catchment
Method

.5 .5

.5

.5

.5

.5

.5

.5 .5
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1

10 20 Miles0

Figure 6: Results from applying gravity accessibility method to 1990 data
(Assuming β = 0.8)
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because the floating catchment method uses a dichotomous measure. However, the
gravity-based accessibility method also involves more computation, and the
determination of friction coefficient β values requires more data. The floating
catchment method generates physician-to-population ratios, which are compa-
rable to conventional methods and are easy to interpret.

In summary, by taking advantage of GIS technology and population data at a
fine geographic resolution, the two methods presented here consider the interaction

Figure 7: Results from applying gravity accessibility method to 2000 data
(assuming β = 0.8)
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between physicians and patients across geopolitical borders and account for travel
time for determining areas of physician shortage.  Results by the methods show the
spatial variation of accessibility to healthcare within counties.  While the gravity-
based accessibility method seems to be more accurate than the floating catchment
method, the latter is simpler and generates results easier to interpret. It can,
therefore, be argued that by incorporating these new methods into existing
designation practices, areas of healthcare shortage could be more accurately
delineated, enabling limited federal resources to be more appropriately directed to
underserved areas.
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Publicly available data of all hospital discharges has been available
since Medicare changed to a case-based reimbursement system. A non-
confidential version of this dataset contains a Zip Code identifier for each
discharge, in addition to diagnoses, procedures, payer information, hospital
charges and basic demographic data. The method for converting the raw data
into a useful marketing database is described. An application of this database
in conjunction with GIS is presented here. In this application, the market
share of a community hospital is analyzed. A series of maps shows that
geography plays an important role in hospital choice, and a linear regression
model provides quantitative evidence of this pattern. Finally, bivariate maps
are used for more complex analysis.

 INTRODUCTION
A dataset of all hospital discharges has been available for many years. This

chapter describes the dataset and shows one of its potential applications with GIS.
This application analyzes the market share of a community hospital and identifies
potential opportunities for further hospital growth.



280   Wolarsky

THE DATASET
In 1965, Medicare legislation was passed after many years of debate

concerning national health insurance. During the succeeding 15 years, it became
apparent that the original projections of hospital cost had been too low. In an
attempt to control these costs, the Health Care Financing Administration (HCFA)
changed to a radically different payment scheme. Rather than paying hospitals for
their ongoing costs for each admission, they would reimburse hospitals with a fixed
payment for each diagnosis. The goal was to shift some of the financial risk back
to the hospitals. Thus, a hospital would be paid a previously decided upon amount
for acute appendicitis, irrespective of the cost of the actual care given.

In order to implement the program, HCFA adopted a classification of diseases
called Diagnostic Related Groups (DRGs). This classification scheme provided a
way to group all hospital discharges into a few hundred diagnoses on which
Medicare could base all its hospital payments. Upon discharge, the patient’s
physician lists all the pertinent discharge diagnoses and procedures in the medical
record. This sheet then goes to a “coder,” an individual who converts each diagnosis
and procedure into an “ICD9,” number. A computer program called a “grouper”
then aggregates all the ICD9 codes into a single DRG number on which payment
is made. In general, there are paired diagnoses for most major conditions–one code
for the uncomplicated case and another for the more complex case. The system thus
allows for two levels of severity of illness.

In order to implement the system, a dataset called UB82, for Uniform Bill, was
constructed. This dataset has recently been updated to UB92 but has remained
relatively stable for many years. Of great importance is that many states and fiscal
intermediaries have adopted this dataset. The dataset contains several hundred
fields of data, including the patient’s demographic data, age, sex, race, insurance
coverage, as well as up to nine diagnoses, six procedures, length of stay, and the
calculated DRG. There are several fields listing all the various hospital charges.
Many states make their data publicly available in a non-confidential dataset that
masks the ability to identify the individual patient, and often the individual physician.
While individual street addresses are masked, Zip Codes are included in the
dataset.

As a result of the availability of this data, many applications have been found
for its use. Dr. John Wennberg at Dartmouth has developed a series of atlases
showing the geographical variations in hospital care based on this dataset, as well
as other claims data.

A more complex and controversial use of this dataset has been the efforts to
analyze quality of hospital and physician care. Algorithms to assign a severity rating
of illness to cases have been constructed by weighting the various diagnostic and
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procedure codes, along with variables such as age and sex. After assigning a
severity rating to each case, the utilization of hospital resources and outcomes such
as length of stay  have been analyzed. In this manner, statistical analysis of the norms
and outliers for each diagnosis has been produced. These efforts have been
controversial because of the inconsistencies of coding patterns in hospitals, as well
as the complex logistic regression analyses employed for the design of the severity
ratings.

USING THE DATA
States vary in the way in which they release the UB82/92 data. Many now

provide data on CD-ROM that enable personal computer users easy access to the
dataset. The main impediment to using the dataset is the ability to use a relational
database program, such as Microsoft Access. The reason is that the released data
contains millions of records in which all the text entries are coded, i.e., in numerical
form. Instead of a text entry to hospital name or diagnosis, there is a three-digit code
for hospital name and a five-digit ICD9 code for diagnosis. It is thus necessary to
import the raw data into a relational database program that will link each coded field
to a matching table listing the code numbers with the associated text entries.

The second impediment to the use of the data is that one must be familiar with
Medicare jargon. While it is not difficult to figure out that “provider number” refers
to “hospital name,” there have been a number of changes over the years, which have
modified the DRG groupers and other fields. The easiest solution to this problem
is to identify the individual at a nearby hospital who is the keeper of the codes.

Once the dataset has been converted into a database of hospital discharges,
one can then query the database. This can be done from within the database
program, or by sending the query from GIS software–depending on the software
being used. A simple query, for example, might be to count the number of discharges
per Zip Code. The database program then returns an answer with two columns–
a list of Zip Codes and an associated number of discharges. It is then easy to save
this answer in a format recognized by the GIS program, and import the table into
the GIS. One then links the Zip Code column of the data table to the geographical
file in the GIS and can easily produce maps of the discharges. A more complex, but
extremely useful query, is the cross tabulation query. Here, one asks the database
to provide a count of discharges per hospital per Zip Code. One then has a table
with a Zip Code in each row, and a hospital name in each column. When this is linked
to a Zip Code geographical file, each hospital appears as an attribute for each Zip
Code. It is then simple to scroll through the hospitals and provide a series of thematic
maps for each one. Similarly one can provide maps for any of the pieces of data
contained within UB82/92 such as individual diagnoses, procedures, hospital
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charges, length of stay or insurance carriers.
Once the database is constructed, it is of enormous value for planning or

marketing purposes, as the dataset reflects the entire hospital use for a given
geographic area. One shortcoming of the dataset, however, is that is does not
include outpatient data. As more and more care has migrated into the outpatient
setting, the dataset thus includes less of the total hospital care provided.

MARKET SHARE APPLICATION
One application of this method is the analysis of market share for Hunterdon

Medical Center, a community hospital in Hunterdon County, New Jersey. Hunterdon
County is a relatively rural county in the western part of central New Jersey,
bordering on Pennsylvania. While it is the only hospital in the county, it is surrounded
by a series of other hospitals within an easy drive of Hunterdon County.

Using the 1997 UB82/92 dataset, it was determined that the overall market
share of Hunterdon Medical Center was 63% for residents of Hunterdon County.
In other words, of all residents of the county needing hospital admission, 63% were
admitted to Hunterdon Medical Center. A basic principle of marketing is to attempt
to segment the market. Thus one could query the database as to patterns of
admission by diagnosis, procedure, age, sex and insurance carrier. In this particular
application, the role of geography was to be addressed. Simply, to what extent does
location of patient residence explain the hospital of choice for admission?

While maps were prepared for all the surrounding hospitals, three are shown
here as examples. There are thematic maps for admissions to Hunterdon Medical
Center, as well as its two closest hospitals and main competitors, Somerset Medical
Center and Warren Hospital. In order to facilitate comparison, these three maps
were prepared with similar scales and legends. The maps show the outline for
Hunterdon County with Zip Code boundaries indicated. Each map then shows the
admissions to its respective hospital by Hunterdon County Zip Code. Locations of
the hospitals in Hunterdon, Somerset and Warren counties are indicated by the
capital “H” symbols.

The first map, “Hunterdon Medical Center Admissions,” shows the location
of the hospital in the central portion of the county, with Somerset County to the east
and Warren County to the west. The Zip Code thematic map clearly shows that
most admissions came from the Zip Code in which the hospital is located, with a
further distribution as indicated by the shading. It should be noted that one
disadvantage of using Zip Code boundaries in thematic maps is that the Zip Codes
are of uneven size, population and may extend across county lines. Nonetheless,
they are the only geographic variable in the publicly available dataset.

The second map, “Somerset Medical Center Admissions,” shows the pattern
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Figure 1: Hunterdon Medical Center admissions

Figure 2: Somerset Medical Center admissions

of admissions to this hospital from Hunterdon County. A striking feature is that the
overwhelming majority of patients come from Zip Codes contiguous with Somerset
County. The major roads are included in this map to show that there is an interstate
road and two other major highways providing access for patients from Hunterdon
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County to Somerset Hospital.
The third map, “Warren Hospital Admissions,” similarly shows that admis-

sions again are largely from Zip Codes contiguous to Warren County. It should be
noted that the admissions here are less than to Somerset Hospital. One reason may
well be that there are fewer good access roads in this part of the county.

Maps of the other hospitals surrounding Hunterdon County reveal a similar
picture–geography is an important variable in determining which hospital people
choose. Given all the possible factors that might affect a person’s choice, it is clear
that proximity is of significant importance.

A quantitative approach to this subject was taken by Phibbs and Robinson
(1983).  They studied hospitals in California in order to determine hospital market
size for use primarily in antitrust analysis. They measured the distance between each
hospital and the centroid of each Zip Code. Using publicly available data, they then
calculated the average radius to provide 75% and 90% of each hospital’s market
share. Their findings concluded that the median distance to capture 75% of hospital
admissions was 7.33 miles, and 14 miles for 90% of admissions. This study confirms
that local geography plays an important role in hospital choice.

BUILDING A MODEL
In order to gain further insight into the role of geography, an attempt was made

to build a multiple linear regression model. Such a model asks whether the results

Figure 3: Warren Hospital admissions
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of a dependent variable, such as admissions from each Zip Code, can be predicted
from a variety of independent variables. In this case several demographic variables
were chosen from census data. These included population of each Zip Code,
elderly population, housing value and mean income. In order to test the geographic
component, the distance from each Zip Code was measured to Hunterdon Medical
Center, as well as the distance to the nearest other hospital. These two measure-
ments were included in the model. Finally, since physicians play an important role
in hospital access, the number of primary care physicians in each Zip Code was
included in the model as an independent variable.

The model was run in SPSS, and an R-squared of .67 was obtained–that is,
67% of the variability of admissions to Hunterdon Medical Center from each Zip
Code could be explained by the variables selected by the model. The final model
included three variables–population of each Zip Code, distance of each Zip Code
from Hunterdon Medical Center and number of primary care physicians in each Zip
Code. The regression model thus confirmed the impression that geography and
geographic variables play an important part in determining hospital admission.

FURTHER ANALYSIS USING BIVARIATE MAPS
At this point, one could argue that while the maps are interesting, the conclusion

that most people would rather go to a nearby hospital rather than a distant one is
fairly intuitive. The map, “Market Share Percent,” shows the percentage of
Hunterdon Medical Center market share for each Zip Code. Clearly the market
share is highest in the Zip Code of the hospital and in the contiguous central Zip
Codes of the county.

A different view of this data is obtained, however, if one maps two thematic
variables per Zip Code.  This is done by attaching one set of numeric attributes to
a Zip Code boundary file, and a second set to the Zip Code centroid point file. In
this case, market share is mapped by three symbols–star, circle, and square–each
representing a third of market share. As indicated in the legend, the star represents
the highest third of market share. A second variable, out-migration, is mapped by
the underlying shades of gray in each Zip Code.  Out-migration refers to the number
of cases admitted to other hospitals per Zip Code, rather than market share percent.
At first glance, one sees that market share is generally higher in the southern part of
the county and lower in the northern half. In keeping with this, out-migration is
generally lower in the southern half. One extremely surprising finding, however, is
in the Zip Code of Hunterdon Medical Center. Here it can be seen that while the
market share is high, it also has the highest number of patients leaving the county for
care elsewhere. This counter-intuitive finding results from the fact that Zip Codes,
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again, are not of uniform size. In fact, the Zip Code of the hospital is several times
the size of most of the other Zip Codes. Thus while the market share in this Zip Code
is 80%, this Zip Code has approximately 500 patients seeking care elsewhere–far
greater than in other Zip Codes. This finding provides an opportunity for further
research in this interesting observation.

Figure 4: Market share percent

Figure 5: Outmigration and market share
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MARKETING THEORY
This finding proved to be of importance in terms of constructing a general

theory of market share for the hospital. There were several new physicians who
were interested in locating in Hunterdon County and sought advice as to where they
might locate. At the time of the analysis, the dominant thought was that the hospital
should expand centrifugally by placing physicians in the distant parts of the county,
and even in surrounding counties. The research results, however, indicate a market
share model, which includes proximity to the hospital as an important variable. In
order to attempt to determine where new physicians might establish offices, another
bivariate map was used. Since the regression model indicated hospital admissions
were greatest in the Zip Codes with large populations close to the hospital, a map
was made with two thematic variables. The variable indicated by the solid symbols
was again market share. However, in this bivariate map, the underlying thematic
variable was population. The figures were based on census numbers and census
estimates for future growth in the county.

Analysis of the map reveals several important facts. First, the market share, as
seen in the previous map, shows a clear difference between the northern and
southern halves of the county. The population, however, shows a clear pattern in
which the Zip Codes of maximal population are in the northeastern quadrant of the
county and extend into Somerset County.  Third, as seen previously, this region of

Figure 6: Population and market share
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the county is traversed by a series of roads that led directly to Somerset Medical
Center. It thus became quite clear that there was an area of low market share and
high population within easy driving distance of both Hunterdon Medical Center and
Somerset Medical Center. It thus made marketing sense to place more emphasis
on this portion of the county than on peripheral areas elsewhere. Furthermore, a
map including physician locations (not included here) enabled more detailed study
of where opportunities might exist for new physician offices.

SUMMARY
1. The publicly available UB82/92 dataset is of value in the analysis of patterns

of hospital use. The raw data has to be converted into a usable database, but
then facilitates analysis using any of the included variables.

2. Geographic location is an important variable in segmenting the hospital
population. Despite all the factors that might influence choice of hospital,
proximity is extremely important.

3. Geographical analysis with the dataset and GIS is a powerful tool for analyzing
the hospital market. Besides showing basic patterns of hospital uses, bivariate
geographical analysis can be used for more complex analysis.
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Accessibility to general practitioners (GPs) is an important health
issue that has financial, cultural and geographical dimensions. This chapter
concentrates on a Geographical Information System method for assessing
geographical accessibility using network analysis but begins with an overall
review of health accessibility literature, followed by a more detailed review
of GIS solutions to assessing geographical accessibility.  A procedure based
on ArcInfo software is described and demonstrated using cost path analysis
to determine the minimum travel time and distance to the closest GP via a
road network. This analysis is applied to approximately 36,000 census
centroids in New Zealand and this enables travel time and distance to be
linked to the population distribution. Statistics can be generated on what is
the average time spent traveling or the average distance traveled if everybody
visited a GP once. These statistics can be generated for different management
areas and enables comparisons to be made between regions. This accessibility
model is intended for decision support for health planners assessing the
distribution of GP services. It can also be easily adapted for other services
such as access to hospitals and cancer screening centers.
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INTRODUCTION
Accessibility to general practitioners (GPs) is a major contentious issue in

many countries (Perry & Gesler, 2000). Poor access to primary health services,
such as GPs, can result in people with simple health problems not being advised by
GPs and subsequently developing more complex problems with considerable
discomfort that can be expensive to treat (Haynes et al., 1999). Health planners and
policy developers require information on accessibility to GPs so that procedures
and policies can be developed to address inequity. An important consideration for
such decision making is where people are living, and their travel distance and time
to the closest GP.

Geographical access models developed using network analysis functions in a
GIS have enormous potential for informing policy development and grounding
debate on how to achieve social equity of primary healthcare access.  However,
accessibility to health services is a complex subject and it is important that this is well
understood before developing such models. There are many political and cultural
considerations of accessibility that GIS cannot easily model. GIS can model
geographical accessibility and this complements other considerations.

This chapter begins with a general discussion on the meaning of accessibility
and the many facets to this term. The discussion then narrows to geographical
accessibility and the GIS capabilities available to model this. An example of a GIS
method for estimating the geographical accessibility of GPs is then comprehensively
described and demonstrated. This example uses least cost analysis to determine the
minimum travel time and distance to the closest GP via a road network. This analysis
was applied to approximately 36,000 census enumeration district (meshblock)
centroids in New Zealand, and this enabled travel time and distance to be linked to
the population distribution. Statistics were generated on what is the average time
spent traveling or the average distance traveled if everybody visited a GP once.
These statistics can be generated for different management areas and enables
comparisons to be made between regions.

A difficulty with calculating travel times is determining the travel speeds for
different roads. Road layers often contain information that describes the road
characteristics, and additional information on the bendiness of the roads can be
obtained from calculating the sinuosity of the roads. A process for calculating
sinuosity and estimating road travel speeds is described.

This chapter finishes with a discussion on the application of this accessibility
model. This process can be easily adapted for other services such as access to
hospitals and cancer screening centers.
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ACCESSIBILITY
"Accessibility is … a slippery notion … one of those common terms
that everyone uses until faced with the problem of defining and
measuring it." (Gould, in Moseley, 1979)
Few would suggest that a simple measure of Euclidean or network distance

from an origin point to a destination is sufficient as a measure of accessibility.
Moseley (1979, p.56) suggests that when we talk of something being "accessible,"
we are simply referring to the degree to which it is "get-at-able." This crude, yet
helpful proposition leads us to an understanding of accessibility that is larger than
a simple measure of distance.

In the past the accessibility problem has been examined by a number of
geographers. Hagerstrand (in Moseley, 1979) outlined accessibility as being made
up of two components, legal/social and the physical. Legal/social accessibility is
described as barriers that exist around a supply point including such variables as
age, training, ability to pay and support from others. Physical accessibility is a
derived measure of the physical "distance" from an individual to the desired supply
point. The separation of these two components of accessibility on a conceptual level
fails to recognize the interactions that take place between the physical and legal/
social in real-life situations. For example a young person having a certain birthday
may mean that they are able to drive alone and therefore have greater physical
accessibility. Nevertheless, this conceptual framework makes explicit the complex
nature of accessibility and identifies physical proximity to a location as simply a part
of the accessibility measure of that location.

The difference between mobility and physical accessibility has been the matter
of discussion by a number of geographers. Daly states (in Moseley, 1979) that
accessibility must be measured in relation to 'distant but necessary destinations.'
This suggests that a desired destination must be required in order to measure
accessibility. Mitchell and Town (in Moseley, 1979), in talking of accessibility
existing in relation to 'a given activity,' also hold to the notion of accessibility requiring
a desire to access a specific destination. Opposing the 'desired' component of
accessibility is Ingram (1971), who defines accessibility as being the ability to
overcome some spatially operating form of friction. Moseley (1979) suggests that
a synthesis of two components, 'units of separation' and 'usefulness of various
destinations' make up physical accessibility measurements. Therefore, such a
combination of elements is most appropriate in analysis and measurement of
physical accessibility.

This brief examination of  'accessibility' theory is sufficient to be able to suggest
that accessibility is a complex concept, with a contested meaning. A further field of
literature will now be examined to place the question of access in a primary health
context.
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ACCESSIBILITY AND PRIMARY HEALTH
The World Health Assembly’s Declaration of Alma-Ata championed the

concept of access to primary healthcare on the international stage in 1978 (WHO/
UNICEF, 1978). In this declaration, accessibility is identified as being contingent
on four interrelated components--geographic, financial, cultural and functional
accessibility.  Each component examines a different aspect of the accessibility
equation.  Geographic accessibility considers the physical separation of population
from a desired location. Financial accessibility describes the ability for a population
to pay for the desired service, whereas cultural accessibility appraises centers not
only in relation to ethnic exclusion but also in terms of personal perceptions in
respect to accessing the desired service. Functional accessibility is simply "…care
is available on a continuing basis to those who need it, whenever they need it, and
that it is provided by the health team required for its proper delivery" (WHO/
UNICEF, 1978).  The above framework for considering accessibility to services
is undoubtedly comprehensive and surpasses the dualistic conceptual model
proposed by Hagerstrand.

A further accessibility model for primary health situations has been developed
by Hulka (1978) and has recently been widely used by American and British
researchers (Coster & Gribben, 1999). Hulka proposed that accessibility was
made up of three components of accessibility, acceptability and availability. The first
component, accessibility, refers to physical distance to the desired location.
Acceptability refers to the cultural and social perceptions, and appropriateness of
a desired service. The third component, availability, highlights the fact that there are
capacity limits to services, and these limits need to link with demand for the service
within an appropriate physical distance.

Joseph and Phillips (1984), in perhaps the seminal text on the topic of
geographic patterns of health service delivery, present ‘locational’ and ‘effective’
accessibility as the defining components of any accessibility description.  ‘Locational’
accessibility refers to the physical proximity of the service. This measure is inherently
geographical and relatively easy to measure using GIS processes. However
‘effective’ accessibility is somewhat more problematic as it includes opening hours
of a service, social and financial availability of the service, and personal space-time
budgets.  Each of these measures is more difficult to model using GIS and generally
available data sets.

PREVIOUS RESEARCH
From the above discussion it can be noted that accessibility is a multifaceted

concept, one that is firstly difficult to define and resultantly difficult to measure.  This
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chapter will focus on a least cost path method to measure physical accessibility to
GPs for aggregated census populations.  A number of previous studies have used
Geographic Information Systems (GIS) to modeling accessibility to healthcare
services, and these will be reviewed.

Wilkinson, Grundy, Landon and Stevenson (1998) suggest that there are two
related conceptual models of access, which are relevant to healthcare organizations
and analyzable using GIS.  These are ‘access to services’ and ‘equity in service
provision’. Each model uses a fundamentally different approach yet are comple-
mentary in describing accessibility.

A GIS method that uses the ‘access to services’ approach tends to produce
outcomes based on Euclidean distance, Thiessen polygons or travel time and
distances measures using transport networks.  Non-GIS research undertaken by
Shannon, Skinner and Bashshur (1973) has shown that consideration of travel time
and distance independently, as accessibility measures of healthcare facilities,
produces different results.  Lovett, Haynes, Sunnenburg and Gale (2000) substan-
tiate this finding in stating that the accessibility measure closest to an individual's
experience is that of travel time.

There have been a number of studies that have used Euclidian distance and
Thiessen polygons. Kohli, Sahlen, Silvertun, Lofman, Trell and Wigertz (1995)
used an areal distance measure in their small-scale analysis in the Ostergotland
province of Sweden. Twigg (1990) employed Thiessen polygons to model
catchment areas of general practitioners.  Zwarenstein,  Kringe and Wolff (1991)
also used a Thiessen polygon-based approach in the assessment of access to
hospitals by different ethnic populations in Natal, South Africa. Perry and Gesler
(2000) used 5km buffers to represent possible travel distance by walking one hour
in their study of Andean Bolivia. This method did not take into consideration
topology of land or use of networks of paths or roads. Road networks have a
fundamental effect on accessibility, therefore models based just on Euclidian
distance and Thiessen polygons, although claiming objectivity, only provide a crude
measure of accessibility.

Accessibility studies involving the use of network models are increasing in
number. This is probably a reflection of the increased computing power that is
affordable and the increased availability of geo-referenced data.  Lovett et al.
(2000) conducted a comprehensive, large-scale study of travel times to GPs based
on both private and public transport. A complex 12-speed class road network was
used to generate travel times. Bus timetables were analysed to assess frequency of
service and areas were then classified based on number of bus services in a day.
This project was based in East Anglia and represented a population of 2,144,921.

New Zealand-based examples have been produced in main by Critchlow
Associates (1995 and 1996) under contract for Central and Southern Regional
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Health Authorities respectively. These studies utilized a simple three-speed class
road network.  This network was used to develop service areas by which census-
based population data was then merged and tabulated.

The use of density mapping in accessibility measurement is based on identifying
and quantifying inter-regional variability. This measure uses simple mathematical
ratios of service supply to population demand and is helpful in identifying inter-
regional differences in rates of servicing. Joseph and Phillips (1984) discuss the
problematic nature of using such methods and identify boundary definition and scale
of analysis as sources of imprecision. There is a long history of generating such
measures of access variability using both larger provincial (Roos, Gaumont &
Horne, 1976; Spaulding & Spitzer, 1972) and smaller, localized urban scales
(Barnett, 1978; Stimson, 1981). General practitioners per population and utiliza-
tion rates are visualized using simple choropleth mapping techniques. This technique
fails to describe patterns of variance found within the regional boundary, and
consequently this technique has a smoothing and generalizing effect of statistical
reality. Clumping of either GPs or populations is harder to identify. These spatial
patterns are often only noticed at certain scales of spatial unit aggregation. This
technique also fails to take into consideration any cost to the user in accessing the
GP service. Travel-time is one such cost that can greatly affect utilization of a service
yet fails to be described by density maps.

LEAST-COST PATH ANALYSIS
Least-cost path analysis theory and techniques can be traced back to Dantzig

who in the 1940s developed linear programming. Linear programming is concerned
with finding optimum solutions to problems such as the minimum cost of travel. From
such techniques Dijkstra (1959) developed his simple path-finding algorithm. Least
cost path commands in Arc/Info are based on the Dijkstra algorithm and are
described in Arc/Info user manuals (ESRI, 1992).  Analysis using least-cost
techniques can be performed using any impedance (cost) variable. Such analyses
are used to describe the shortest distance to a service for a population or a travel
time to the closest service. The shortest path by distance may be totally different to
the shortest path by time (Shannon et al., 1973).

There is a large body of technical literature that describes network systems and
least cost path algorithms (Pollack & Wiebenson, 1960; Moore, 1959; Rapaport
& Abramson, 1959). These tend to fall into the category of literature informing what
has been commonly called ‘the transportation problem,’ which is concerned with
minimizing transport goods for delivery. With the ever-expanding road networks
and associated databases of contemporary society, there is continuing need to
modify shortest path or least cost algorithms. In this respect, Zhan (1996) has
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explored the use of ‘fast’ shortest path algorithms for particular use on large road
networks.

MODELLING MINIMUM TRAVEL DISTANCE TO
THE CLOSEST GP

The following text describes a population-based approach used to calculate
the travel distance to the closest GP. The calculation of travel time requires some
additional modelling and this is described later in this section.

Three input layers were used for the analysis: a road network, meshblock
centroids and point locations of the GPs. Fortunately, the NZ Government has
recently relinquished its demand for royalties for access to the national 1:50,000
topographic data set, which means that a comprehensive road network of NZ is
now available to all researchers. This road network contains various information on
road characteristics but does not contain information on travel speed or time for
each road segment. To calculate travel distance, road segment length is required
and this is easily computed with GIS.

Meshblocks are the smallest areas used in the distribution of census data and
there are approximately 37,000 in the 1996 Census release with a median
population of 90 people per meshblock (Statistics New Zealand, 2001). The
unique identification number for each meshblock links these small areas to
population census data, which facilitates demographic analysis. The meshblock
centroids were generated from Statistics New Zealand’s meshblock areas.

The network analysis capabilities in ARC/INFO were used to calculate
accessibility. The key command used was called nodedistance, which computes
the distances between all possible combinations of origin and destination nodes.
This command uses Dijkstra's least cost path algorithm.  In this study, road network
nodes closest to the meshblock centroids were the origin nodes, and the nodes
closest to the GPs were the destination nodes. The nodes closest to the meshblock
centroids and GPs were identified using the near command, which also calculates
the Euclidian distance to the nodes.

The nodedistance command provides a table of minimum distances via a
network between all possible combinations of origins and destinations. It also
provides identification numbers of the origins and destinations for each record and
the Euclidean distance. The nodedistance function not only identifies distances but
can also be used on any specified field, such as travel time. To identify the closest
GP for a given meshblock centroid, the statistic function in Arcinfo was used to
identify the minimum distance for each origin to the closest destination.

The minimum distance to the closest GP for each centroid was calculated by
summing the network distance (obtained from the nodedistance command and
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subsequent statistics) plus the distance from the centroid to the closest road node
(obtained from the near command) plus the distance from the GP to the closest road
node (also obtained from the near command).

The calculation of minimum travel distance to the closest GP is easy to
understand and Arc/Info provides some powerful commands that make this
possible. This process produces many output tables and the most difficult part of
developing this process was linking all the tables through common identification
fields so that the identified closest GPs and their distances can be linked back to the
meshblock centroids.

The process for calculating the minimum travel time to the closest GP is similar
to the minimum distance process, except road travel time was used instead of
distance. The difficulty with this process was determining what the travel times were
for travelling along the road segments. The method for calculating this is described
below. The travel times from meshblock centroids and from GPs to the closest road
node were calculated using distance (obtained from the GP-distance modelling
process) and a travel speed of 50 km/hour.

The processing time for both travel distance and time was approximately eight
hours using two 750 MHz CPU standard desktop PC computers.

ROAD NETWORK TRAVEL TIMES
The estimated road network travel times were based on whether the road was

inside or outside an urban area, whether or not it was a motorway, the number of
lanes, the surface and the bendiness (sinuosity).

Urban roads were identified from integrating the road network with a
Landcover layer (Thompson, 1998). Motorways were identified by using the field
“name” and searching for the name “Motorway,” and also by manually locating
“open speed limit” roads in the Wellington and Auckland urban areas. The number
of lanes a road has and the road surface were provided with the road layer.

Sinuosity indexes have been used in hydrology to describe the meandering of
river channels. A simple formula for sinuosity is observed length divided by
expected straight-line (direct) length (Haggett & Chorley, 1969). GIS easily
provides observed lengths of lines.  The straight-line length was calculated for each
road segment by creating a new road layer that was a generalization of the original
road layer. This generalization involved removing vertices from the road arcs so that
there was only one vertex per 500m. This had the effect of straightening the road
segments. The lengths of the straightened road segments were then calculated and
joined to the original road network using arc IDs. The sinuosity index was calculated
by dividing the original length by the straight length. If a road was originally straight,
then the sinuosity index will be 1. If a road is bendy then the sinuosity index will be
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above 1. A very bendy road that turns back on itself (hairpin corners on a hill) may
have a high sinuosity score of 4. A sinuosity threshold of more than 1.02 was used
to identify bendy roads. This threshold was determined by graphically viewing the
sinuosity indices of roads in New Zealand and identifying what threshold was
required to distinguish roads that are known to be bendy.

The estimated travel speed for each road segment was calculated as follows:
• Sealed urban roads  - average speed: 30km/hr
• Urban motorway- average speed: 80km/hr
• Non urban, 2 lanes, sealed, straight roads- average speed: 80 km/hr
• Non urban, 2 lanes, sealed, bendy roads- average speed: 60 km/hr
• Non urban, 1 lane, sealed, straight roads- average speed: 70 km/hr
• Non urban, 1 lane, sealed, bendy roads- average speed: 40 km/hr
• Metalled straight roads- average speed: 50 km/hr
• Metalled bendy roads- average speed: 30 km/hr

This classification of road speeds is more detailed than that used by Critchlow
Associates (1995), which was based on only three classes of roads speed - 80km/h
for motorways and high-speed rural roads, 60km/h for slow rural roads, and
35km/h for urban and minor rural roads. The travel time study of GPs in East Anglia
(UK) (Lovett et al., 2000) used 12 classes of travel time, but because traffic and
road conditions are different in the UK, it is not valid to compare them with NZ
roads.

The road segment travel times were calculated from arc lengths and estimated
travel speeds.  It needs to be emphasized that the road segment travel times are
estimations only. The travel speeds for different road types are not based on
scientific empirical evidence but instead on approximations based on personal
experience. This process does not take into account urban expressways where
average travel speeds could be more than 35km/hr. It also does not consider the
effects of traffic congestion and difficult intersections. The network distance and
travel times ignore one-way streets.

The travel times of the road network were tested against travel times between
major towns published by the New Zealand Automobile Association (AA). The
major towns that the AA used were entered into a GIS and least cost path analysis
generated travel times between each town using the derived road network. Overall
the GIS-generated travel times were 5.08% less than the AA times. The absolute
difference in time, calculated as a percentage of the AA time, was 8.85%. This was
considered to be an acceptable difference.

Many meshblock centroids are located on offshore islands or out at sea. These
centroids are used to represent people on boats or isolated islands. The distance
to the closest GP from these centroids is based on the Euclidian distance to the
closest road and the network distance along the road to the closest GP. Sometimes
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the closest roads to these centroids were roads on islands that did not connect to
roads near GPs. This caused a problem that was resolved using two approaches.
First, road networks on large islands were connected to the main road network by
an arc that represented a ferry service route. The travel times for these ferry routes
were then estimated from timetable schedules. The second approach was to then
delete all roads that were not connected to the main road network in the South or
North Islands. The Trace and Nselect commands were used to identify these
roads.

RESULTS AND APPLICATIONS
The travel distance and time to the closest GP for each meshblock centroid is

represented in Figures 1 and 2. These figures show the raw data that results from
the analysis. This data can be aggregated to many different regional management
units, such as Territorial Local Authorities or District Health Boards (DHB).s

Figure 1:  Travel distance to the closest GP by meshblock centroid
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Table 1 shows the average meshblock travel distances and times for each
DHB. A more meaningful representation of this data would be to also consider the
spatial distribution of the population, because there are many areas in New Zealand
that have low population densities. Population census data is aggregated to
meshblocks therefore it is easy to obtain the population for each meshblock and
multiply these by the travel distance or travel time. These products can then be
summed for each DHB, and Table 1 also shows these sums (“Total Population
Distance” and “Total Population Time”). These totals can then be divided by the
population of each DHB to provide the average population distance and the
average population time. These averages are shown in Table 1 and illustrated in
Figures 3 and 4.

Figure 2:  Travel time to the closest GP by meshblock centroid
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The “Average Population Time” is the average amount of time spent travelling
per person in each DHB if everybody visited the closest GP once. These statistics,
based on the population distribution, provide a means of comparing accessibility of
different regions throughout New Zealand. The average travel times appear to be
very low, especially in some DHBs such as Auckland. It needs to be emphasized
that these travel times only include actual driving time, not time required to get in the
car and finding a car park near the GP. Most people in Auckland would require
more time than 1.7 minutes to get to their closest GP because it takes time to load
the car (especially if you have children), get the car out the garage, find a car park
within the vicinity of the GP and walk into the GP’s medical centre. These extra
activities could conservatively add 10 minutes to a journey.

Figure 3:  Average distance to closest GP by District Health Board
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The raw output data can be tabulated to localised scales that show variation
within a DHB. Figure 5 shows the average population travel times by New
Zealand’s Territorial Local Authorities (TLA). This map uses the same class
intervals and shading as Figure 4, which is based on the DHB scale, but looks totally
different. The MacKenzie TLA and the Westland TLA have Average Population
Travel Times of 46 and 34 minutes respectively. Most DHBs contain large cities
where Average Population Travel Time is low, and this reduces the Average
Population Travel Times of the whole DHB even though parts of the DHB may have
high Average Population Travel Times.

Figure 4:  Average time to closest GP by District Health Board
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The raw output data produced from the least-cost analysis can be applied in
many different ways when combined with population data to produce many
interesting maps and statistics. However, it is not appropriate to present many maps
in this chapter. The main intention of this chapter is to describe the process used to
create the base results, rather than demonstrate applications. It is possible to
compare the accessibility of elderly people or different ethnic groups. It can be
safely assumed that elderly people need to visit GPs more frequently than other age
groups. When calculating total travel times, it is possible to put extra weighting on
elderly people. Using such weightings and statistics, it would be possible to examine
and display aspects of social equity in provision of GP services.

Figure 5:  Average time to closest GP by Territorial Local Authority
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The analysis process not only calculated the distance and time to the closest
GP, but also identified the name of the closest GP based on both distance and time
(sometimes these were different). The number of visits each GP would receive if
everybody visited the closest GP once can be easily tabulated and a catchment area
for each GP can also be mapped. The average travel speed per GP visit can also
be calculated and Table 1 shows the average travel speed by DHB.

DISCUSSION AND CONCLUSION
GIS accessibility models based on least cost path analysis are a critical

resource that can be used by health service planners to prioritise the location and
allocation of health services. These models are fairly straightforward, and new
health services can be added and the models reprocessed quickly on a desktop
computer, even for large data sets.

The example of a GIS accessibility model described and demonstrated in this
chapter does not take into consideration all factors relevant to assessing access to
GP services. Firstly, it only considers physical accessibility and does not provide
insight into financial, cultural or functional barriers. Even just considering physical
accessibility, the example does not include consideration of the availability and cost
of public transport. This can be important because not everyone is able to use a
private car. The travel times associated with roads, although based on least cost
path analysis, also included assumptions about travel speed that are only estima-
tions. Further empirical research is required to improve information on road travel
speeds in New Zealand. Nevertheless, this GIS accessibility model does provide
decision support and a relatively consistent method.

When one is developing GIS processes using relatively large data sets and
many operations, careful consideration needs to be given to the possibility of error.
Logical errors associated with the process and inaccurate data sets can have major
effects on the results, and considerable caution and cross-checking is required.
With powerful computer analysis that is often conducted by one individual, it is
imperative that studies be repeated and validated by independent researchers.

The least cost path algorithm used in this analysis was based on an algorithm
developed several decades ago, but what has changed is the availability of large
national spatial databases and computer processing power. The example described
in this chapter has demonstrated that it is now practical to compute accessibility over
large networks using thousands of demand points and thousands of supply points.
This research has raised the awareness of many public servants of what can be done
with GIS, and many are now thinking of other services that should be analysed for
accessibility using this approach. Examples from within the health sector alone can



Mapping Accessibility to General Practitioners   305

be identified as hospitals, mental health centres, eye specialists, ontologists and
maternity services. Health planners are now starting to think of the importance of
maintaining geographical databases relating to such services.
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